• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.025 seconds

Document clustering based on summarized document using K-means algorithm (요약 문서 기반 문서 클러스터링)

  • Oh, Hyung-Jin;Ko, Ji-Hyun;An, Dong-Un;Chung, Sung-Jong
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.589-592
    • /
    • 2002
  • 정보검색 시스템에서 문서 클러스터링 기법은 사용자 질의에 대하여 검색된 문서를 문서간의 관련도에 따라 클러스터로 구성하고 사용자에게 검색 결과로 보여주는 것이다. 본 논문에서는 사용자의 질의에 대하여 검색된 문서를 자동 문서 요약기를 통해 얻은 요약 문서와 문서 전문을 문서들간의 유사도를 기반으로 동적으로 클러스터링 한다. 구현한 시스템의 클러스터링 효과를 검증한 결과 검색된 문서 전문을 클러스터링 한 방식에 비해 요약 문서를 클러스터링 한 방식이 정확률 측면에서 더 나은 성능을 보였다.

  • PDF

Disambiguation of Author Names Using Co-citation (동시인용정보를 이용한 동명이인 저자의 중의성 해소)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.42 no.3
    • /
    • pp.167-186
    • /
    • 2011
  • Co-citation means that two or more studies are cited together by a later study. This paper deals with the relationship between co-citation and author disambiguation. Author disambiguation is to cluster same-name author instances into real-world individuals. Co-citation may influence author disambiguation in terms that two or more related research works performed by the same person may be co-cited by some later studies. This article describes automated steps to gather co-citation information from Google scholar, and proposes a new clustering algorithm to effectively integrate co-citation information with other author disambiguation features. Experiments showed that co-citation helps to improve the performance of author disambiguation.

Mobile Automatic Conversion System using MLP (다층신경망을 이용한 모바일 자동 변환 시스템)

  • Han, Eun-Jung;Jang, Chang-Hyuk;Jung, Kee-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.272-280
    • /
    • 2009
  • The recent mobile industry is providing of a lot of image on/off-line contents are being converted into the mobile contents for architectural design. However, it is difficult to provide users with the existing on/off-line contents without any considerations due to the small size of the mobile screen. In existing methods to overcome the problem, the comic contents on mobile devices are manually produced by computer software such as Photoshop. In this paper, I describe the Automatic Comics Conversion(ACC) system that provides the variedly form of offline comic contents into mobile device of the small screen using Multi-Layer Perceptorn(MLP). ACC produces an experience together with the comic contents fitting for the small screen, which introduces a clustering method that is useful for variety types of comic images and characters as a prerequisite as a stage for preserving semantic meaning. An application is to use the frame form of pictures, website and images in order into mobile device the availability and can bounce back the freeze images contents into dynamic images content.

  • PDF

Cluster Analysis of Climate Data for Applying Weather Marketing (날씨 마케팅 적용을 위한 기후 데이터의 군집 분석)

  • Lee, Yang-Koo;Kim, Won-Tae;Jung, Young-Jin;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.33-44
    • /
    • 2005
  • Recently, the weather has been influenced by the environmental pollution and the oil price has been risen because of the lack of resources. So, the weather and energy are influencing on not only enterprises or nations, but also individual daily life and economic activities very much. Because of these reasons, there are so many researches about management of solar radiation needed to develope solar energy as alternative energy. And many researchers are also interested in identifying the area according to changing characteristics of climate data. However, the researches have not developed how to apply the cluster analysis, retrieval and analytical results according to the characteristics of the area through data mining. In this paper, we design a data model of the data for storing and managing the climate data tested in twenty cities in the domestic area. And we provide the information according to the characteristics of the area after clustering the domestic climate data, using k-means clustering algorithm. And we suggest the way how to apply the department store and amusement park as an applied weather marketing. The proposed system is useful for constructing the database about the weather marketing and for providing the elements and analysis information.

  • PDF

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Applications of a Methodology for the Analysis of Learning Trends in Nuclear Power Plants

  • Cho, Hang-Youn;Park, Sung-Nam;Yun, Won-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.293-299
    • /
    • 1995
  • A methodology is applied to identify tile learning trend related to the safety and availability of U.S. commercial nuclear power plants. The application is intended to aid in reducing likelihood of human errors. To assure that tile methodology ran be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation(TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting tile systems and for events caused by human deficiencies were used. Clustering analysis was used to identify the learning trend in multi-dimensional histograms. A computer rode is developed based on tile K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age.

  • PDF

Analysis of the Inner Degradation Pattern by Clustering Algorism at Distribution Line (군집화 알고리즘을 이용한 배전선로 내부 열화 패턴 분석)

  • Choi, Woon-Shik;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.58-61
    • /
    • 2016
  • Degradation in power cables used in distribution lines to the material of the wire, manufacturing method, but also the line of the environment, generates a variety of degradation depending upon the type of load. The local wire deterioration weighted wire breakage accident can occur frequently, causing significant proprietary damage can lead to accidents and precious. In this study, the signal detected by the eddy current aim to develop algorithms capable of determining the signals for the top part and at least part of the signal by using a signal processing technique called K-means algorithm.

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Scalable Hybrid Recommender System with Temporal Information (시간 정보를 이용한 확장성 있는 하이브리드 Recommender 시스템)

  • Ullah, Farman;Sarwar, Ghulam;Kim, Jae-Woo;Moon, Kyeong-Deok;Kim, Jin-Tae;Lee, Sung-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.61-68
    • /
    • 2012
  • Recommender Systems have gained much popularity among researchers and is applied in a number of applications. The exponential growth of users and products poses some key challenges for recommender systems. Recommender Systems mostly suffer from scalability and accuracy. The accuracy of Recommender system is somehow inversely proportional to its scalability. In this paper we proposed a Context Aware Hybrid Recommender System using matrix reduction for Hybrid model and clustering technique for predication of item features. In our approach we used user item-feature rating, User Demographic information and context information i.e. specific time and day to improve scalability and accuracy. Our Algorithm produce better results because we reduce the dimension of items features matrix by using different reduction techniques and use user demographic information, construct context aware hybrid user model, cluster the similar user offline, find the nearest neighbors, predict the item features and recommend the Top N- items.

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.