Applications of a Methodology for the Analysis of Learning Trends in Nuclear Power Plants

  • Published : 1995.10.01

Abstract

A methodology is applied to identify tile learning trend related to the safety and availability of U.S. commercial nuclear power plants. The application is intended to aid in reducing likelihood of human errors. To assure that tile methodology ran be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation(TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting tile systems and for events caused by human deficiencies were used. Clustering analysis was used to identify the learning trend in multi-dimensional histograms. A computer rode is developed based on tile K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age.

Keywords