• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.026 seconds

Performance Comparison of Some K-medoids Clustering Algorithms (새로운 K-medoids 군집방법 및 성능 비교)

  • Park, Hae-Sang;Lee, Sang-Ho;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.421-426
    • /
    • 2006
  • We propose a new algorithm for K-medoids clustering which runs like the K-means clustering algorithm and test several methods for selecting initial medoids. The proposed algorithm calculates similarity matrix once and uses it for finding new medoids at every iterative step. To evaluate the proposed algorithm we use real and artificial data and compare with the clustering results of other algorithms in terms of three performance measures. Experimental results show that the proposed algorithm takes the reduced time in computation with comparable performance as compared to the Partitioning Around Medoids.

  • PDF

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

XML Document Clustering Technique by K-means algorithm through PCA (주성분 분석의 K 평균 알고리즘을 통한 XML 문서 군집화 기법)

  • Kim, Woo-Saeng
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.339-342
    • /
    • 2011
  • Recently, researches are studied in developing efficient techniques for accessing, querying, and storing XML documents which are frequently used in the Internet. In this paper, we propose a new method to cluster XML documents efficiently. We use a K-means algorithm with a Principal Component Analysis(PCA) to cluster XML documents after they are represented by vectors in the feature vector space by transferring them as names and levels of the elements of the corresponding trees. The experiment shows that our proposed method has a good result.

Energy Efficient Cluster Routing Method Using Machine Learning in WSN (무선 센서 네트워크에서의 머신러닝을 활용한 에너지 효율적인 클러스터 라우팅 방안 연구)

  • Mi-Young, Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.124-130
    • /
    • 2023
  • In this paper, we intend to improve the network lifetime by improving the energy efficiency of sensor nodes in a wireless sensor network by utilizing machine learning using K-means clustering algorithm. A wireless sensor network is a wireless network composed of physical devices including batteries as physical sensors. Due to the characteristics of sensor nodes, all resources must be efficiently used to minimize energy consumption to maximize network lifetime. A cluster based approach is used to manage groups of relatively large numbers of nodes. In the proposed protocol, by improving the existing LEACH algorithm, we propose a clustering algorithm that selects a cluster head using a cluster based approach and a location based approach. The performance results to be improved were measured using Matlab simulation. Through the experimental results, K-means clustering was applied to the energy efficiency part. By utilizing K-means, it is confirmed that energy efficiency is improved and the lifetime of the entire network is extended.

A Fuzzy Clustering Method based on Genetic Algorithm

  • Jo, Jung-Bok;Do, Kyeong-Hoon;Linhu Zhao;Mitsuo Gen
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1025-1028
    • /
    • 2000
  • In this paper, we apply to a genetic algorithm for fuzzy clustering. We propose initialization procedure and genetic operators such as selection, crossover and mutation, which are suitable for solving the problems. To illustrate the effectiveness of the proposed algorithm, we solve the manufacturing cell formation problem and present computational comparisons to generalized Fuzzy c-Means algorithm.

  • PDF

Analysis on the Distribution of RF Threats Using Unsupervised Learning Techniques (비지도 학습 기법을 사용한 RF 위협의 분포 분석)

  • Kim, Chulpyo;Noh, Sanguk;Park, So Ryoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.346-355
    • /
    • 2016
  • In this paper, we propose a method to analyze the clusters of RF threats emitting electrical signals based on collected signal variables in integrated electronic warfare environments. We first analyze the signal variables collected by an electronic warfare receiver, and construct a model based on variables showing the properties of threats. To visualize the distribution of RF threats and reversely identify them, we use k-means clustering algorithm and self-organizing map (SOM) algorithm, which are belonging to unsupervised learning techniques. Through the resulting model compiled by k-means clustering and SOM algorithms, the RF threats can be classified into one of the distribution of RF threats. In an experiment, we measure the accuracy of classification results using the algorithms, and verify the resulting model that could be used to visually recognize the distribution of RF threats.

Differential Evolution with Multi-strategies based Soft Island Model

  • Tan, Xujie;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.261-266
    • /
    • 2019
  • Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

Clustering Algorithm for Time Series with Similar Shapes

  • Ahn, Jungyu;Lee, Ju-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3112-3127
    • /
    • 2018
  • Since time series clustering is performed without prior information, it is used for exploratory data analysis. In particular, clusters of time series with similar shapes can be used in various fields, such as business, medicine, finance, and communications. However, existing time series clustering algorithms have a problem in that time series with different shapes are included in the clusters. The reason for such a problem is that the existing algorithms do not consider the limitations on the size of the generated clusters, and use a dimension reduction method in which the information loss is large. In this paper, we propose a method to alleviate the disadvantages of existing methods and to find a better quality of cluster containing similarly shaped time series. In the data preprocessing step, we normalize the time series using z-transformation. Then, we use piecewise aggregate approximation (PAA) to reduce the dimension of the time series. In the clustering step, we use density-based spatial clustering of applications with noise (DBSCAN) to create a precluster. We then use a modified K-means algorithm to refine the preclusters containing differently shaped time series into subclusters containing only similarly shaped time series. In our experiments, our method showed better results than the existing method.