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Abstract

Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends

on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the

probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population

diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the

subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using

the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the

subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and

compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system,

and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.

Index Terms: Differential evolution, Evolutionary algorithm, Soft island model, K-means clustering

I. INTRODUCTION

Differential evolution (DE), proposed by Price and Storn

[1], is an unsophisticated and beneficial evolutionary algo-

rithm (EA) for solving optimization problems. Recently, DE

has been widely applied in diverse fields, such as pattern

recognition [2], artificial neural networks [3], image process-

ing [4], and electronics and communication engineering [5].

DE’s functioning primarily depends on its trial vector gen-

eration strategy (i.e., mutation and crossover operators) and

regulatory boundaries (i.e., population scope NP, scaling

component F, and crossover structures CR). The relevant

plans and regulatory scales are invaluable in advancing DE

implementation. Recently, the multi-island model has been

adopted to advance DE execution to obtain the apt sequence

of strategy and control metrics. The information exchange

among islands can maintain diversity and balance the

exploitation and exploration capabilities.

Based on these considerations, a novel multi-island DE,

called k-mean soft island model DE(KSDE), is proposed in

this study. In KSDE, the population is classified into clusters

using k-means cluster algorithm. Consequently, a more suit-

able mutation strategy may be randomly selected to match

different clusters. KSDE uses the soft island model (SIM) [6]

to migrate individuals and enhance population assortment. To

evaluate the effectiveness of KSDE, a KSDE analysis was

conducted on 13 benchmark functions with 30 variables. 

The remainder of this study is structured as follows. In

Section II, the classic DE is established. In Section III,

related literature is reviewed. The proposed DE algorithm,

named KSDE, is presented in detail in Section IV. The

experimental results are presented in Section V. Finally, Sec-
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tion VI concludes the study and provides recommendations

for future studies.

II. DIFFERENTIAL EVOLUTION

Differential evolution is used to solve real number optimi-

zation problems. The object function is given as f (x), x = (x1,

x2, …, xD), where D denotes the space dimension.

First, the NP population x is randomly generated; hence,

each vector of the xi in the G generation can be generated

using (1):

(1)

where rnd ∈ [0, 1] is a random number, xi,j∈ [Li, Ui].

A. Mutation

After initialization, the donor vector vi is produced with

respect to xi using (2). During the G generation, vi can be

generated through the DE/rand/1 mutation strategies. 

(2)

Here, i = 1, 2, …, NP, and random integers r1, r2, and r3 ∈

[1, NP] are reciprocally dissimilar and distinct from the key

i. The scaling component Fi ∈ [0, 1] is a positive control cri-

terion for gauging the trajectory difference.

B. Crossover

After the noise vector is generated through modification,

DE actuates a binomial shift on the pursued vector xi and

noise vector vi to engender an experimental vector ui = (ui,1,

ui,2, ···, ui,D). The binomial crossover is defined as expressed

in (3).

(3)

Here, j = 1, 2, …, D, rnd ∈ [0,1] is an unvaryingly dis-

persed random digit, and jrnd ∈ [1, 2, …, D] is an arbitrarily

selected index, which guarantees that ui,j secures a minimum

variable, originating from the donor vector CR ∈ [0,1].

C. Selection

Finally, an acquisitive selection arrangement is employed

to ensure that the best vector survives to the succeeding gen-

eration. An insatiable selection order is described in (4).

. (4)

In (4), f (.) is a function with a minimized feature.

The DE includes three rungs, namely, mutation, crossover,

and election. The DE is consecutively reiterated while wait-

ing for a dissolution benchmark to be satisfied.

III. PREVIOUS STUDIES

The DE system is an efficient and developmental algo-

rithm over continuous spaces. However, the implementation

of the DE algorithm depends on mutation, crossover

schemes, and control structures (NP, F, and CR). Generally,

the appropriate combination of strategies and restrictions

could improve the performance of the DE algorithm.

Recently, several scholars have proposed various empirical

guidelines for choosing relevant strategies and parameters

depending on the problem.

Some studies focused on mutation vector generation strat-

egies. The conventional DE system employs the DE/rand/1

strategy, which focuses on exploration. To improve the utili-

zation of DE, the most agreeable entity in the existing popu-

lation is selected in the mutation strategy, such as DE/best/1

and DE/rand-to-best/1. 

Extensive research has been conducted on appropriate

parameter settings of DE. Therefore, various tactics have

been developed to circumvent maladjustment through trial

and error. Several parameter reworking approaches have

been proposed, including linear decrease [7] and arbitrary

sampling [8]. Brest et al. [9] recommends a self-adaptation

arrangement (jDE), where F and CR were preset into

individuals and fine-tuned during the DE process. JADE,

presented by Zhang and Sanderson [10], operates a control

parameter acclimatization scheme in keeping the parameters

up-to-date in terms of dispersion, from which the merits of F

and Cr are assessed.

To build up the operation of the DE algorithm, the param-

eter settings and adaptive strategy have been explored in DE.

A self-adaptive DE algorithm (SaDE) [11] has been devel-

oped, where the procedures and control metrics are self-

acclimatized in line with their familiarities in enhancing clar-

ifications. CoDE [12] improves the execution of DE by com-

bining effective trial vector generation strategies with

appropriate control boundary contexts. 

The concept of “island models” has been initiated in

several studies to enhance the performance of the EA. Wu et

al. [13] proposed a multi-population grounded methodology

(MPEDE) to accomplish multiple collective strategies, which

concurrently entails three modification schemes: “current-to-

pbest/1,” “current-to-rand/1,” and “rand/1.” 

IV. PROPOSED ALGORITHM

This section describes a novel DE algorithm, i.e., KSDE.
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KSDE applies the k-means assembling algorithm in dividing

the population into k subpopulations and uses SIM to trans-

fer information between subpopulations.

After splitting the population into k subpopulations,

multiple strategies were implemented to the subpopulations.

In this study, three mutation strategies were selected. Firstly,

the strategy “DE/rand/1” and the strategy “DE/rand/2” are

selected. According to the characteristics of subpopulation, a

new mutation strategy to generate a mutation vector is

proposed in (5) 

 (5)

In (5), the real a ∈ xn and b ∈ xr are chosen randomly.

To improve the search diversity, SIM was utilized for

transferring information between the subpopulations. The

individual indi was found to belong to the island pi. Subse-

quently, the vector r can be selected from either the contem-

porary island or any island possessing the probability P. The

number m of vector r is determined from the algorithm. In

this study, m = 5 is set. Based on the analysis above, the

pseudocode of the KSDE algorithm is presented in Algo-

rithm 1.

The KSDE algorithm had five input parameters, namely

population size NP, dimension D, benchmark function f, and

integers k and m. In lines 1 and 2 of Algorithm 1, the

population p and individual value fit are initialized. In line 3,

a mutation strategy pool is built. The whole population

evolution is controlled by the function evaluates (FES) in

lines 4 and 5. In line 6, the population is split into k

subpopulations based on the individual location. In this

study, the quantitative metrics F and CR are samples from

the Gaussian distribution. The parameters F and CR are

assembled from the dispersion N(0.5, 0.3) and N(0.9, 0.1),

respectively, in line 7. To improve the search diversity, m

individuals are selected by SIM in line 8. In lines 9 and 10,

the subpopulation pi is randomly assigned to mutation Spj to

generate the mutation vector. Finally, the KSDE algorithm

performs the crossover and selection operation and returns

the global best solution fitbest.

In KSDE Algorithm 1, the multi-strategy improves the

population exploration ability, while SIM enhances the

population search diversity. Therefore, KSDE improves the

exploration of the population.

V. EXPERIMENTAL STUDY

A. Benchmark Functions and Experimental Setting

To evaluate the performance of KSDE, 13 benchmark

functions [14] were selected in carrying out the experiment.

Among the 13 tasks, f1-f5 are unimodal, f6 is the step func-

tion, f7 is the noisy function, and f8-f13 are multimodal. 

In all the experiments, the parameters of all algorithms

were set unless a change is required: D = 30, NP = 100, F =

N(0.5, 0.3), and CR = N(0.9, 0.1). The termination criterion

of function evaluations was 10E+4. Moreover, every func-

tion in each algorithm independently has 25 runs on a Win-

dows 10 computer with a 3.4 GHz quad-core processor and

16 GB RAM. Wilcoxon’s statistical tests were conducted for

the results of each algorithm [15].

B. Experimental results and comparisons with other 
DE variants

This section checks the superiority of the proposed algo-

rithm by comparing the results of the KSDE algorithm with

those of four other state-of-the-art DE modifications: CoDE

[12], jDE [9], JADE [10], and MPEDE [13]. The parameters

of the four DE variants used in this study are consistent with

those in the literature. Table 1 displays the statistical results

of 13 function values achieved using CoDE, jDE, JADE,

MPEDE, and KSDE. The Wilcoxon’s rank-sum test results

are summarized at the lowermost portion of Table 2, where

“–,” “+,” and “≈” indicate that the performance of the asso-

ciated algorithm is inferior, superior, or similar to that of

KSDE, respectively. For functions f1-f13, KSDE exhibits the

best performance among the five algorithms, except f6. The

main reason is that KSDE can improve the population

diversity by migrating individual information between

subpopulations.

In addition to the analysis above, the Friedman test was

performed on the experimental results for all dimensions.

The median standing of the five DE sets is presented in

Table 2. The average ranking with a smaller value represents

Algorithm 1. KSDE algorithm

Input: NP, D, f, k, m

Output: Population’s best solution: fitbest

1. Generate the population p using equation (1);

2. Calculate the individual function values fit;

3. Strategy pool Sp = {Sp1, Sp2, …, Spn};

4. FES=NP;

5. while FES <= NP*1000

6. The population p is divided into k subpopulation using k-means, 

p = {p1, p2, …, pk};

7. F = randn(0.5,0.3), Cr = randn(0.9,0.1);

8. Pick r1, r2, …, rm using SIM;

9. Randomly combine Spj and pi to Si,j, i∈ [1, k], j∈ [1, n];

10. pi implements the strategy Spj and generates the noise vector;

11. Apply equation (3) to generate the trial vector;

12. Apply equation (4) to select the best individual for the next generation;

13. end while

14. Return fitbest.

 



J. lnf. Commun. Converg. Eng. 17(4): 261-266, Dec. 2019 

https://doi.org/10.6109/jicce.2019.17.4.261 264

a better performance. KSDE has the best performance among

the five schemes used in the test.

The statistical results of the function values demonstrate

that KSDE is the best algorithm for the 13 test functions.

There are two possible reasons for the excellent performance

of KSDE. First, the clustering method can enhance explora-

tion ability. Second, the SIM method improves the popula-

tion diversity by migrating individual information among

different groups. 

For the convenience of illustration, the evolution graphs of

five functions, f1, f3, f5, f10, and f13, are provided. Fig. 1

depicts the convergence graphs of functions f1, f3, f5, f10, and

f13, respectively, in which the curves of each graph uses an

average value of 25 runs. From Fig. 1, it can be observed

that KSDE improves the convergence of the DE algorithm.

VI. CONCLUSION

In this study, a unique KSDE algorithm, which maintains

population diversity using a soft island model, was proposed.

During the process of population evolution, the population

was divided into several subpopulations through k-means

clustering algorithm, where individual subpopulations per-

formed distinct mutation functions. To advance the DE

range, the population data were divided into different groups

using the k-means clustering algorithm and then the new

information exchange mechanism by SIM. The experiments

Table 1. Comparison with reference algorithm for each dimension

F
CoDE jDE JADE MPEDE KSDE

Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard

f1 1.16E-19 - 2.05E-19 6.90E-18 - 4.38E-18 3.59E-39 - 1.24E-38 4.42E-13 - 2.99E-13 9.34E-105 3.04E-104

f2 7.89E-11 - 4.88E-11 3.37E-11 - 1.53E-11 1.29E-16 - 3.96E-16 1.25E-06 - 5.89E-07 5.53E-52 1.50E-51

f3 2.25E-03 - 2.93E-03 3.07E+00 - 1.64E+00 2.43E-09 - 3.26E-09 4.07E-06 - 9.49E-06 1.34E-24 3.69E-24

f4 1.26E-04 - 8.06E-05 1.06E+00 - 1.05E+00 1.29E-05 - 1.38E-05 3.17E-04 - 1.11E-04 6.28E-46 1.66E-45

f5 1.91E+01 - 1.60E+01 2.74E+01 - 1.68E+01 2.68E+00 - 1.21E+00 2.02E+01 - 1.16E+00 1.07E+00 5.37E+00

f6 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 0.00E+00

f7 8.12E-03 - 2.13E-03 1.02E-02 - 2.45E-03 2.07E-03 - 5.94E-04 3.14E-03 - 8.26E-04 3.11E-04 1.70E-04

f8 -1.26E+04 - 6.33E-12 -1.26E+04 - 2.07E-12 -1.26E+04 - 3.28E+01 -1.23E+04 - 1.39E+02 -1.26E+04 1.86E-12

f9 8.35E+00 - 3.72E+00 4.00E-05 - 5.55E-05 1.26E-04 - 6.75E-05 1.57E+01 - 3.30E+00 0.00E+00 0.00E+00

f10 6.22E-11 - 3.32E-11 5.67E-10 - 2.53E-10 4.87E-15 - 1.18E-15 2.01E-07 - 1.06E-07 8.88E-16 0.00E+00

f11 1.00E-13 - 5.01E-13 1.47E-16 - 5.14E-16 5.17E-15 - 2.46E-14 2.23E-08 - 1.12E-07 0.00E+00 0.00E+00

f12 1.48E-21 - 1.05E-21 6.64E-19 - 9.10E-19 1.78E-32 - 1.03E-32 1.13E-14 - 1.19E-14 1.57E-32 5.59E-48

f13 1.67E-20 - 2.46E-20 5.18E-18 - 5.42E-18 1.43E-32 - 1.77E-33 2.25E-13 - 2.13E-13 1.35E-32 5.59E-48

-/+/≈ 12/0/1 12/0/1 12/0/1 12/0/1

Table 2. Average ranking based on the Friedman test

Algorithm CoDE jDE JADE MPEDE KSDE

Ranking 3.35 3.73 2.38 4.38 1.15

Fig. 1. Evolution process of the average best values for (a) f1, (b) f3, (c) f5,
(d) f10, and (e) f13 with dimension D = 30 over 25 runs.
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were performed using 13 benchmark indices. The perfor-

mance of KSDE was compared with those of similar high-

technology DE variants. The results demonstrate the effi-

ciency and suitability of the KSDE system. 

In future studies, the effects on large-scale optimization

problems with high dimension should be investigated.

Another research direction involves applying various tensor

operations in DE to optimize real-world problems further. 
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