• Title/Summary/Keyword: K-Means 클러스터링

Search Result 368, Processing Time 0.026 seconds

Disease Detection Algorithm Based on Image Processing of Crops Leaf (잎사귀 영상처리기반 질병 감지 알고리즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Many Studies have been actively conducted on the early diagnosis of the crop pest utilizing IT technology. The purpose of the paper is to discuss on the image processing method capable of detecting the crop leaf pest prematurely by analyzing the image of the leaf received from the camera sensor. This paper proposes an algorithm of diagnosing leaf infection by utilizing an improved K means clustering method. Leaf infection grouping test showed that the proposed algorithm illustrated a better performance in the qualitative evaluation.

  • PDF

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

Metro Station Clustering based on Travel-Time Distributions (통행시간 분포 기반의 전철역 클러스터링)

  • Gong, InTaek;Kim, DongYun;Min, Yunhong
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.193-204
    • /
    • 2022
  • Smart card data is representative mobility data and can be used for policy development by analyzing public transportation usage behavior. This paper deals with the problem of classifying metro stations using metro usage patterns as one of these studies. Since the previous papers dealing with clustering of metro stations only considered traffic among usage behaviors, this paper proposes clustering considering traffic time as one of the complementary methods. Passengers at each station were classified into passengers arriving at work time, arriving at quitting time, leaving at work time, and leaving at quitting time, and then the estimated shape parameter was defined as the characteristic value of the station by modeling each transit time to Weibull distribution. And the characteristic vectors were clustered using the K-means clustering technique. As a result of the experiment, it was observed that station clustering considering pass time is not only similar to the clustering results of previous studies, but also enables more granular clustering.

Creation of Frequent Patterns using K-means Algorithm for Data Mining Preprocess (데이터 마이닝의 전처리를 위한 K-means 알고리즘을 이용한 빈발패턴 생성)

  • Heui-Jong Yoo;Chi-Yeon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.336-339
    • /
    • 2008
  • 우리가 사용하는 데이터베이스 내에는 많은 양의 데이터 들이 들어 있으며, 계속적으로 그 양은 늘어나고 있다. 이러한 데이터들로부터 질의를 통해 얻을 수 있는 기본적이고 단순한 정보들과 달리 고급 정보를 얻게 해주는 방법이 데이터 마이닝이다. 데이터 마이닝의 기법 중에서 본 논문에서는 k-means 알고리즘을 사용하여 트랜잭션을 클러스터링 함으로써 데이터베이스의 트랜잭션 수를 줄여 연관규칙의 대표적인 알고리즘인 Apriori 알고리즘의 단점인 트랜잭션 스캔으로 인한 성능 저하를 개선하고자 한다.

Context-awareness Clustering with Adaptive Learning Algorithm (상황인식 기반 클러스터링의 적응적 자율 학습 분할 알고리즘)

  • Jeon, Il-Kyu;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.612-614
    • /
    • 2022
  • This paper propose a clustering algorithm for mobile nodes that possible more efficient clustering using context-aware attribute information in adaptive learning. In typically, the data will be provided to classify interrelationships within cluster properties. If a new properties are treated as contaminated information in comparative clustering, it can be treated as contaminated properties in comparison clustering. In this paper, To solve this problems in this paper, we have new present a context-awareness learning based model that can analyzes the clustering attributed parameters from the node properties using accumulated information properties.

  • PDF

Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering (Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Type-2 fuzzy sets are preferred over type-1 sets as they are capable of addressing uncertainty more efficiently. The fuzzifier values play pivotal role in managing these uncertainties; still selecting appropriate value of fuzzifiers has been a tedious task. Generally, based on observation particular value of fuzzifier is chosen from a given range of values. In this paper we have tried to adaptively compute suitable fuzzifier values of interval type-2 possibilistic fuzzy c-means (IT2 PFCM) for a given data. Information is extracted from individual data points using histogram approach and this information is further processed to give us the two fuzzifier values $m_1$, $m_2$. These obtained values are bounded within some upper and lower bounds based on interval type-2 fuzzy sets.

An Analysis of Player Types using Data Clustering in Gamification (데이터 클러스터링을 활용한 게이미피케이션 환경에서의 플레이어 유형 분석)

  • Park, Sungjin;Kang, Bumsoo;Kim, Sungsoo;Kim, Sangkyun
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.77-88
    • /
    • 2017
  • The purpose of this study is to compare existing player type theories using data clustering. For the study, 235 result data of the gamified class in second semester of A university at 2016 used. This study applied K-means and Silhouette to decide the appropriate number of clusters. The player types applied in this study are Bartle's 2-D and 3-D player types, Ferro's five types, and BrainHex. According to the results, Bartle's 2D player type was found to be the best in perspective of data clustering. This study also analyzed the distribution of characteristics for each player types. The results of this study are expected to have an impact on player analysis, which is used in the application of gamification or in the development process.

Comparison between k-means and k-medoids Algorithms for a Group-Feature based Sliding Window Clustering (그룹특징기반 슬라이딩 윈도우 클러스터링에서의 k-means와 k-medoids 비교 평가)

  • Yang, Ju-Yon;Shim, Junho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The demand for processing large data streams is growing rapidly as the generation and processing of large volumes of data become more popular. A variety of large data processing technologies are being developed to suit the increasing demand. One of the technologies that researchers have particularly observed is the data stream clustering with sliding windows. Data stream clustering with sliding windows may create a new set of clusters whenever the window moves. Previous data stream clustering techniques with sliding windows exploit the coresets, also known as group features that summarize the data. In this paper, we present some reformable elements of a group-feature based algorithm, and propose our algorithm that modified the clustering algorithm of the original one. We conduct a performance comparison between two algorithms by using different parameter values. Finally, we provide some guideline for the selective use of those algorithms with regard to the parameter values and their impacts on the performance.

Faults Current Discrimination Using FCM (FCM을 이용한 고장전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Ji, Suk-Joon;Lee, Joon-Tark;Kim, Kwang-Back
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.458-460
    • /
    • 2007
  • RBF 네트워크의 중간층은 클러스터링 하는 층으로 주어진 자료 집합을 유사한 클러스터들로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링 하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 이용하고자 하였다. 그리하여 본 논문에서는 고장 전류의 특성을 해석하여 그 원인을 판단, 분류하기 위하여 전력계통의 고장 기록 장치로부터 얻어지는 선로의 전류 데이터를 FCM을 이용 분류하여 다양한 고장 모드를 판별할 수 있었다.

  • PDF

A Study on Task Result Verification using Resource Clustering in Desktop Grids (데스크톱 그리드에서 자원 클러스터링을 이용한 작업 결과 검증에 관한 연구)

  • Kang, Jihun;Song, SungJin;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.176-178
    • /
    • 2015
  • 데스크톱 그리드에서는 휘발성과 이질성과 같은 동적 특성을 갖는 자원의 자율적인 수행에 의해 얻어진 작업 결과의 검증이 중요하다. 이를 위해, 본 논문에서는 자원의 동적 특성을 신뢰도와 결과반환확률로 정의하고 k-means 클러스터링 알고리즘을 적용하여 자원들을 자원 그룹으로 분류하고, 분류된 자원 그룹에 따라 작업의 복제수를 결정하는 자원 클러스터링 기반의 컬과 검증 기법을 제안한다.