DOI QR코드

DOI QR Code

Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering

Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법

  • Joo, Won-Hee (Deparment of Electronic and Communication Engineering, Hanyang University) ;
  • Rhee, Frank Chung-Hoon (School of Electronic Engineering, Hanyang University)
  • 주원희 (한양대학교 전자통신공학부) ;
  • 이정훈 (한양대학교 전자공학부)
  • Received : 2017.03.04
  • Accepted : 2017.04.13
  • Published : 2017.04.25

Abstract

Type-2 fuzzy sets are preferred over type-1 sets as they are capable of addressing uncertainty more efficiently. The fuzzifier values play pivotal role in managing these uncertainties; still selecting appropriate value of fuzzifiers has been a tedious task. Generally, based on observation particular value of fuzzifier is chosen from a given range of values. In this paper we have tried to adaptively compute suitable fuzzifier values of interval type-2 possibilistic fuzzy c-means (IT2 PFCM) for a given data. Information is extracted from individual data points using histogram approach and this information is further processed to give us the two fuzzifier values $m_1$, $m_2$. These obtained values are bounded within some upper and lower bounds based on interval type-2 fuzzy sets.

일반적으로 type-1 fuzzy set 에 존재하는 불확실성을 보다 효율적으로 다루고 제어하기 위하여 Type-2 fuzzy set (T2 FS)이 널리 사용되고 있다. T2 FS에서 퍼지화 상수 (fuzzifier value) m은 이러한 불확실성을 처리하기 위한 가장 중요한 요소이다. 따라서 적절한 퍼지화 상수 값을 결정하는 연구는 여전히 지속되고 있고, 많은 방법들이 연구 되어 왔다. 본 논문에서는 주어진 패턴을 분류하기 위하여 Interval type-2 possibilistic fuzzy C-means (IT2PFCM) 클러스터링 방법을 사용한다. 클러스터링을 위해 사용된 IT2 PFCM 방법에서 각 데이터에 대하여 적응적으로 적절한 퍼지화 상수의 값을 계산하는 방법을 제안한다. 히스토그램 접근법을 통하여 각각의 데이터 포인트로부터 정보를 추출해 내고 추출된 정보를 이용하여 두 개의 퍼지화 상수인 $m_1$, $m_2$. 값을 결정한다. 이렇게 얻어진 값은 interval type-2 fuzzy의 최저 및 최고 멤버쉽 값을 결정하게 된다.

Keywords

References

  1. G. Raju, B. Thomas, S. Tobgay, and S. Kumar, "Fuzzy clustering methods in data mining: a comparative case analysis," ICACTE, pp. 489-493, 2008.
  2. J. Bezdek, Pattern recognition with fuzzy objective function algorithms, New York: Plenum, 1981.
  3. R. Krishnapuram and J. Keller, "A possibilistic approach to clustering," IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 98-110, May 1993. https://doi.org/10.1109/91.227387
  4. N. Pal and J. Bezdek, "A possibilistic fuzzy c-means clustering algorithm," IEEE Trans. Fuzzy Syst., vol. 13, pp. 517 - 530, Aug. 2005. https://doi.org/10.1109/TFUZZ.2004.840099
  5. Z. Wa, W. Xie, and J. Yu, "Fuzzy c-means clustering algorithm based on kernel method," Int. Conf. on Computational Intelligence and Multimedia Applications, pp. 49-54, Sep. 2003.
  6. J. Bezdek, R. Hathaway, M. Sabin, and W. Tucker, "Convergence theory for fuzzy c-means: counter examples and repairs," IEEE Trans. Systems, Man and Cybernetics, vol. 17, pp. 873-877, Oct. 1987. https://doi.org/10.1109/TSMC.1987.6499296
  7. J. Yu, Q. Cheng, and H. Huang, "Analysis of the weighting exponent in the FCM," IEEE Trans. Systems, Man, and Cybernetics, vol. 34, pp. 634-639, Feb. 2004. https://doi.org/10.1109/TSMCB.2003.810951
  8. Y. Cho, H. Lee, and H. Jeon, "Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion," Journal of Korean Institute of Intelligent Systems, vol. 25, no.2, pp. 168-173, 2015. https://doi.org/10.5391/JKIIS.2015.25.2.168
  9. I. Ozkan and I. Turksen, "Upper and lower values for the level of fuzziness in FCM," Information Sciences, vol. 177, pp. 5143-5152, Dec. 2007. https://doi.org/10.1016/j.ins.2007.06.028
  10. J. Min and F. Rhee, "An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition," Journal of Korean Institute of Intelligent Systems, vol. 19, no.1, pp. 102-107, 2009. https://doi.org/10.5391/JKIIS.2009.19.1.102
  11. C. Hwang and F. Rhee, "Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means," IEEE Trans. Fuzzy Syst., vol. 15, no.1, pp. 107-120, Feb. 2007. https://doi.org/10.1109/TFUZZ.2006.889763
  12. F. Rhee, "Uncertain fuzzy clustering: insights and recommendations," IEEE Computational Intelligence Magazine, vol. 2, no. 1, Feb. 2007.