• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.03 seconds

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.

Quantization of Lumbar Muscle using FCM Algorithm (FCM 알고리즘을 이용한 요부 근육 양자화)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.27-31
    • /
    • 2013
  • In this paper, we propose a new quantization method using fuzzy C-means clustering(FCM) for lumbar ultrasound image recognition. Unlike usual histogram based quantization, our method first classifies regions into 10 clusters and sorts them by the central value of each cluster. Those clusters are represented with different colors. This method is efficient to handle lumbar ultrasound image since in this part of human body, the brightness values are distributed to doubly skewed histogram in general thus the usual histogram based quantization is not strong to extract different areas. Experiment conducted with 15 real lumbar images verified the efficacy of proposed method.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Performance Analysis of User Clustering Algorithms against User Density and Maximum Number of Relays for D2D Advertisement Dissemination (최대 전송횟수 제한 및 사용자 밀집도 변화에 따른 사용자 클러스터링 알고리즘 별 D2D 광고 확산 성능 분석)

  • Han, Seho;Kim, Junseon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.721-727
    • /
    • 2016
  • In this paper, in order to resolve the problem of reduction for D2D (device to device) advertisement dissemination efficiency of conventional dissemination algorithms, we here propose several clustering algorithms (modified single linkage algorithm (MSL), K-means algorithm, and expectation maximization algorithm with Gaussian mixture model (EM)) based advertisement dissemination algorithms to improve advertisement dissemination efficiency in D2D communication networks. Target areas are clustered in several target groups by the proposed clustering algorithms. Then, D2D advertisements are consecutively distributed by using a routing algorithm based on the geographical distribution of the target areas and a relay selection algorithm based on the distance between D2D sender and D2D receiver. Via intensive MATLAB simulations, we analyze the performance excellency of the proposed algorithms with respect to maximum number of relay transmissions and D2D user density ratio in a target area and a non-target area.

Partial Discharge Diagnosis of Interface Defect by the Distribution Statistical Analysis (분포 통계 해석에 의한 계면 결함 부분방전 진단)

  • Cho, Kyung-Soon;Lee, Kang-Won;Kim, Won-Jong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Most of the high voltage insulation systems, such as the power cable joint having hetero interface, are composed of more than two different insulators to improve insulating performance. The partial discharge(PD) in these hetero interface is expected to affect the total insulation performance. Thus, it is important to study electrical properties on these interfaces. This study described the influence of copper and semiconductive substance defects on $\Phi$-q-n distribution between the interface of the model cable joints to classify PD source. PD was sequentially detected for 600 cycles of the applied voltage. The K-means cluster analysis has been analyzed to investigate the $\Phi$-q-n distribution. The skewness-kurtosis(Sk-Ku) plot from K-means clustering results was defined to quantify cluster distribution and classify distribution patterns. The Sk-Ku plot is composed of skewness and kurtosis along abscissa and ordinate which indicate the asymmetry and the sharpness of distribution. As a result of the Sk-Ku plot, it was confirmed that the data was distributed in 1st 2nd and 3rd quadrant at copper foreign substance defect, but in case of semiconductive foreign substance, the data was distributed in 2nd quadrant only.

A Machine Learning Program for Impact Fracture Analysis (머신러닝을 이용한 충격파면 해석에 관한 연구)

  • Lee, Seung-Jin;Kim, Gi-Man;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2021
  • Analysis of the fracture surface is one of the most important methods for determining the cause of equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the fracture surface: ductile and brittle fractures. In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.

Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera (열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구)

  • Mun, Seong-Hwan;Kim, Tae-Hoon;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

Correlation between Impervious Surface Area Rate and Urbanization Indicators at the Si-Gun Level (시군단위의 불투수면적률과 도시화 지표의 상관성 분석)

  • Jang, Min-Won;Kim, Hyeonjoon;Choi, Yoonhee;Kim, Hakkwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.55-67
    • /
    • 2023
  • This study investigated the correlation between impervious surface area rate(ISAR) and various urbanization indicators at the si-gun administrative level. For the years 2017 and 2021, we built correlation matrices to examine the relationships between ISAR and eight urbanization indicators, including total population, working-age population, residential power consumption, non-agricultural power consumption, paved road length, permitted development area, numbers of registered vehicles, and cadastral 'Dae' parcel area. Additionally, K-means clustering was employed to classify the 229 si-guns based on the ISAR change patterns. The analysis revealed a significant positive correlation between ISAR and urbanization indicators for both years studied. However, the interannual comparison showed a noticeably weaker correlation between changes in ISAR and urbanization indicators from 2017 to 2021. The K-means analysis also showed that si-guns with higher ISAR values, typically urban areas, demonstrated a weaker correlation, while the cluster consisting mostly of rural areas with lower ISAR displayed stronger correlations. These results suggested that ISAR should be a significant factor for consideration in sustainable rural planning and development strategies.

Unsupervised Learning Model for Fault Prediction Using Representative Clustering Algorithms (대표적인 클러스터링 알고리즘을 사용한 비감독형 결함 예측 모델)

  • Hong, Euyseok;Park, Mikyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 2014
  • Most previous studies of software fault prediction model which determines the fault-proneness of input modules have focused on supervised learning model using training data set. However, Unsupervised learning model is needed in case supervised learning model cannot be applied: either past training data set is not present or even though there exists data set, current project type is changed. Building an unsupervised learning model is extremely difficult that is why only a few studies exist. In this paper, we build unsupervised models using representative clustering algorithms, EM and DBSCAN, that have not been used in prior studies and compare these models with the previous model using K-means algorithm. The results of our study show that the EM model performs slightly better than the K-means model in terms of error rate and these two models significantly outperform the DBSCAN model.