• Title/Summary/Keyword: K and Ca

Search Result 13,164, Processing Time 0.044 seconds

Abnormal Grain Growth Mechanism of Calcium Hexaluminate Phase

  • Song, Jun-Ho;Jo, Young-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.525-526
    • /
    • 2006
  • Calcium-hexaluminate phase $(CA_6)$ is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of $CA_6$ morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate $(CA_6)$ composites. Calcium-hexaluminate $(CA_6)$ composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate $(CA_6)$ phase was obtained by the solid reaction through the formation of intermediate phase $(CA_2)$. $CA_6$ phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of $CA_6$, alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.

  • PDF

Effect of sodium on transmembrane calcium movement in the cat ileal longitudinal muscle

  • Rho, Young-Jae;Yun, Il;Kang, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 1987
  • To get a better insight into the exxistence and the role of a Na-Ca exchange mechanism in smooth muscle, the effect of Na substitution with sucrose on tension development, cellular Ca uptake and $^{45}Ca$ efflux was investigated using isolated cat ileal longitudinal muscle strips. Experimental results were summarized as follows;1) Exposure of the cat ileal longitudinal muscle to Na-free solution induced a contraction, and the magnitude of the contraction increased after incubation of the muscle strips with ouabain ($2{\times10^{-}5}$M) for 1hr. 2) Cellular Ca uptake in Na-free solution increased with an increase in Na content of the Na-loading media, and a linear relationship existed between tissue Na content and cellular Ca uptake for 10 min 3) After tissues were equilibrated in PSS containing $^{45}Ca$ for 2hr, cellular Ca uptake decreased with rising the external Na concentration. 4)Removal of medium Na or inhibition of the Na-K pump decreased the rate of $^{45}Ca$ efflux. These results strongly suggested that Na substitution increases cellular Ca uptake and decreases the rate of $^{45}Ca$ efflux via a Na-Ca exchange mechanism.

  • PDF

Intracellular $Ca^{2+}$ Movement in Contraction Induced by Carbachol and Oxytocin in Rat Myometrium (자궁평활근의 Carbachol 및 Oxytocin 수축에 있어서의 세포내 $Ca^{2+}$ 동원)

  • Kim, Bo-Kyung;Chung, Dong-Su;Kim, Yoon-Sun;Lee, Yoon-Ho;Yong, Jun-Hwan;Lee, Won-Chang;Ozaki, Hiroshi;Karaki, Hideaki;Lee, Sang-Mog
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1996
  • The properties of cytosolic $Ca^{2+}$ level$([Ca^{2+}]_i)$ movement of high KCl, carbachol and oxytocin were examined with myometrium isolated from non-pregnant rat(estrus cycle). High concentration of KCl$({\leq}23.3mM)$ induced rhythmic increases in $[Ca^{2+}]_i$ and muscle contraction. However, sustained $[Ca^{2+}]_i$ and contracion were obtained at higher KCl concentration $({\geq}30.3mM)$ The rhythmic and sustained contraction closely associated with changes in $[Ca^{2+}]_i$ induced by high KCl. Carbachol $(3{\sim}30{\mu}M$ generated rhythmic increases with tonic component in $[Ca^{2+}]_i$ and muscle contraction. Myometrial contraction stimulated by carbachol was also closely correlated with change in $[Ca^{2+}]_i$. And the $[Ca^{2+}]_i/contraction$ relationships were similar when muscle strips were stimulated by high KCl and carbachol. Maximal concentration of carbachol $(10{\mu}M)$ and oxytocin(100 nM) increased $[Ca^{2+}]_i$ and contraction which were slightly greater than that of high KCl in non-pregnant myometrium, respectively. However, the $[Ca^{2+}]_i$ and contraction were strongly inhibited by verapamil $(10{\mu}M)$, a 1-type $Ca^{2+}$ channel blocker, as in the case of high KCl. Additionally, although carbachol further increased $[Ca^{2+}]_i$ and contraction induced by high KCl, these changes also strongly inhibited by application of verapamil. These results suggest that uterotonic agents, carbachol and oxytocin, induced contraction by increase in $[Ca^{2+}]_i$ through $Ca^{2+}$ influx than by a regulation of $Ca^{2+}-sensitization$ in non-pregnant myometrium.

  • PDF

Review of Ca Metabolic Studies and a Model for Optimizing Gastrointestinal Ca Absorption and Peak Bone Mass in Adolescents

  • Park, Jong-Tae;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.78-88
    • /
    • 2015
  • Purpose: The objective of this study is to review researches regarding factors that potentially affect adolescent calcium (Ca) metabolism, and to suggest a potential modeling approach for optimizing gastrointestinal Ca absorption and peak bone mass. Background: Optimal gastrointestinal Ca absorption is a key to maximizing peak bone mass in adolescents. Urine Ca excretion in adolescents rises only after bone accretion is saturated, indicating that higher intestinal Ca absorption and bone retention is necessary to ensure maximum bone accretion. Hence, maximizing peak bone mass is possible by controlling the factors influencing gastrointestinal Ca absorption and bone accretion. However, a mechanism that explains the unique adolescent Ca metabolism has not yet been elucidated. Review: Dietary factors that enhance gastrointestinal Ca absorption may increase the available Ca pool usable for bone accretion, and a specific hormone may direct optimal Ca utilization to maximize peak bone mass. IGF-1 is an endocrine hormone whose levels peak during adolescence and increase fractional Ca absorption and bone Ca accretion. Prebiotics, generally obtained from dietary sources, have been reported to exert a beneficial effect on Ca absorption via microbiota activity. We selected and reviewed three candidates that could be used to propose a comprehensive Ca metabolic model for optimal Ca absorption and peak bone mass in adolescents. Modeling: Modeling has been used to investigate Ca metabolism and its regulators. Herein, we reviewed previous Ca modeling studies. Based on this review, we proposed a method for developing a comprehensive model that includes regulatory effectors of IGF-1 and prebiotics.

The Alteration of $Ca^{2+}-activated\;K^+$ Channels in Coronary Arterial Smooth Muscle Cells Isolated from Isoproterenol-induced Cardiac Hypertrophy in Rabbit

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2001
  • It has been proposed that $Ca^{2+}-activated$ K $(K_{Ca})$ channels play an essential role in vascular tone. The alterations of the properties of coronary $K_{Ca}$ channels have not been studied as a possible mechanism for impaired coronary reserve in cardiac hypertrophy. The present studies were carried out to determine the properties of coronary $K_{Ca}$ channels in normal and hypertrophied hearts. These channels were measured from rabbit coronary smooth muscle cells using a patch clamp technique. The main findings of the present study are as follows: (1) the unitary current amplitudes and the slope conductance of coronary $K_{Ca}$ channels were decreased without changes of the channel kinetics in isoproterenol-induced cardiac hypertrophy; (2) the sensitivity of coronary $K_{Ca}$ channels to the changes of intracellular concentration of $Ca^{2+}$ was reduced in isoproterenol-induced cardiac hypertrophy. From above results, we suggest for the first time that the alteration of $K_{Ca}$ channels are involved in impaired coronary reserve in isoproterenol-induced cardiac hypertrophy.

  • PDF

Effects of Concentration of $\textrm{NO}_3^\;-$ $\textrm{K}^+$ and $\textrm{Ca}^{++}$ in Nutrient Solution on the Seedling Growth of ‘Mudeungsan’ Watermelon (배양액내 $\textrm{NO}_3^\;-$, $\textrm{K}^+$$\textrm{Ca}^{++}$ 농도가 무등산수박 유묘 생장에 미치는 영향)

  • 이범선;정순주;박순기
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • This experiment was conducted to investigate the effects of concentration of NO$_{3}$$^{[-10]}$ , $K^{+}$ and $Ca^{++}$ in nutrient solution on the seedlings growth of ‘Mudeungsan’watermelon. Seeds were sown on March 16, 1997. NO$_{3}$$^{[-10]}$ , $K^{+}$ and $Ca^{++}$ was treated with three different levels, respectively, NO$_{3}$$^{[-10]}$ = 106, 206, 406ppm; $K^{+}$ = 150, 200, 400 ppm; $Ca^{++}$ = 150, 200, 400 ppm. Plant growth was investigated at four-days interval in 10 days after treatment. Increasing N concentration in the nutrient solution increased the plant height, leaf area, number of leaves, fresh and dry weight of shoot while high concentration of K and Ca in the nutrient solution decreased the seedling growth in terms of leaf area, leaf dry weight. The uptake of N, K and Mg in petiole sap was positively affected by the adding of 206 ppm of nitrate, 150 ppm of potassium and 200 ppm of calcium levels, respectively. The P and Ca uptake in petiole sap was not affected by the N and K concentrations in the nutrient solution while K concentration above 200 ppm decreased the N and Mg content in petiole sap. High concentration of Ca in the nutrient solution increased the Ca content in petiole sap while Ca concentration above 200 ppm decreased the N content.

  • PDF

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

Analysis of Vasopressin-Induced $Ca^{2+}$ Increase in Rat Hepatocytes

  • Kim, Hyun-Sook;Fumikazu-Okajima;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • To analyze vasopressin-induced $Ca^{2+}$ increase in liver cells, rat hepatocytes were isolated and attached to collagen-coated cover slips. Using fura-2, a $Ca^{2+}$-sensing dye, changes in intracellular $Ca^{2+}$ concentration by vasopressin were monitored. Results in this communication suggested that vasopressin-induced $Ca^{2+}$ increase were composed of both $Ca^{2+}$ release from internal $Ca^{2+}$ stores and influx from the plasma membrane. The $Ca^{2+}$ influx consisted of two distinguishable components. One was dependent on the presence of vasopressin and the other was not. SK&F96365 blocked vasopressin-induced $Ca^{2+}$ influx in a dose-dependent manner. Vasopressin-induced $Ca^{2+}$ release from internal stores diminished in a primary culture of hepatocytes according to the culture time. However, changes in vasopressin-induced $Ca^{2+}$ influx across the plasma membrane differed from changes in the $Ca^{2+}$ release from internal stores, suggesting two separate signalings from receptor activation to internal stores and to the plasma membrane.

Effects of a Low Calcium Diet and Oxalate Intake on Calcium Deposits in Soft Tissues and Bone Metabolism in Ovariectomized Rats (저 칼슘 및 수산을 첨가한 식이가 난소절제한 흰쥐에서 조직의 칼슘 침착과 골격대사에 미치는 영향)

  • Lee, Mi-Rin;Park, Mi-Na;Mun, Ji-Young;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.2
    • /
    • pp.101-111
    • /
    • 2011
  • It is controversial whether low calcium intake, commonly associated with osteoporosis, results in calcium accumulation in soft tissues. This study was conducted to investigate the effects of low calcium (Ca) and oxalate (ox) intake on soft-tissue Ca deposits and bone metabolism in ovariectomized (ovx) rats. Eight week old female Sprague-Dawley rats were ovariectomized and divided into four groups. The rats were fed experimental diets containing low (0.1%, w/w) or normal (0.5%, w/w) Ca with or without sodium oxalate (1%, w/w); Sham/NCa, Ovx/NCa, Ovx/LCa, Ovx/NCa-ox, Ovx/LCa-ox for 6 weeks. All ovx rats showed a remarkable increase in body and tissue weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, blood urea nitrogen, alkaline phosphatase, and decreases in weight, ash, and Ca contents, as well as bone breaking force compared to those in sham rats. Serum Ca concentration was not significantly affected by dietary Ca levels or ox intake. Kidney Ca, ox acid content, and microscopic Ca deposition increased remarkably in the Ovx/LCa-ox group compared to those in the other groups. Ca content in the spleen and aorta also increased significantly, but the weight contents, Ca, bone breaking force, and Ca and oxalic acid in feces decreased significantly in the Ovx/LCa-ox group. Serum parathyroid hormone levels were not significantly different among the groups. These results indicate that low Ca intake decreased bone mineral content and increased Ca deposits in soft tissues, which was aggravated by ox intake in ovx rats. Thus, high ox intake may result in a kidney disorder in patients with osteoporosis who eat a low Ca diet.

The Effects of Manganese Supplementation on Bone Status and Calcium Balance in Ovariectomized Rats according to the Calcium Intake Levels (난소절제 쥐에서 칼슘섭취수준에 따른 망간의 보충이 골격상태 및 칼슘평형에 미치는 영향)

  • Bae, Yun-Jung;Sohn, Eun-Wha;Kim, Byung-Chul;Seo, Dong-Wan;Kim, Mi-Hyun
    • Journal of Nutrition and Health
    • /
    • v.41 no.3
    • /
    • pp.206-215
    • /
    • 2008
  • The purpose of this study was to investigate the effect of manganese (Mn) supplementation on bone status and calcium balance in ovariectomized rats according to the calcium intake levels. Total of 50 Sprague Dawley female rats (6 weeks) were divided into 5 groups and bred for 12 weeks: sham operated control group (SACa), OVX Ca deficiency group (OLCa) with Ca deficiency diet (0.1% Ca modified AIN-93N diet), OVX Ca deficiency & Mn supplement group (OLCaMn), OVX adequate Ca group (OACa; 0.5% Ca AIN-93N diet) and OVX adequate Ca & Mn supplement group (OACaMn). BMD (bone mineral density) of the femur was increased by Mn supplementation in OVX adequate Ca group. However, BMDs of spine, femur and tibia were lowered in OLCa compared to the OLCaMn group. Bone strength of tibia in OLCaMn group was significantly lower than OLCa group. Serum ALP (alkaline phosphatase) and CTx (C-telopeptide of collagen cross-links) levels were significantly higher in ovariectomized rats than those in the sham group, but they were not changed by Mn supplementation. Ca retention rate and Ca absorption rate did not differ among the experimental groups. Urinary Ca excretion was increased by Mn supplementation in Ca deficiency rats. In summary, Mn supplementation resulted in positive effects on bone mineral density ovariectomized rats with which intake adequate Ca. However, Mn supplementation on Ca deficiency ovariectomized rats resulted in decrement of BMO and bone strength by increasing Ca excretion. Therefore, it is encouraged to consider calcium intake levels in supplementation of manganese in order to prevent postmenopausal osteoporosis and to keep bone healthy. (KoreanJNutr2008; 41(3): 206~215)