DOI QR코드

DOI QR Code

Review of Ca Metabolic Studies and a Model for Optimizing Gastrointestinal Ca Absorption and Peak Bone Mass in Adolescents

  • Park, Jong-Tae (Department of Food Science and Technology, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University)
  • Received : 2015.01.27
  • Accepted : 2015.02.26
  • Published : 2015.03.01

Abstract

Purpose: The objective of this study is to review researches regarding factors that potentially affect adolescent calcium (Ca) metabolism, and to suggest a potential modeling approach for optimizing gastrointestinal Ca absorption and peak bone mass. Background: Optimal gastrointestinal Ca absorption is a key to maximizing peak bone mass in adolescents. Urine Ca excretion in adolescents rises only after bone accretion is saturated, indicating that higher intestinal Ca absorption and bone retention is necessary to ensure maximum bone accretion. Hence, maximizing peak bone mass is possible by controlling the factors influencing gastrointestinal Ca absorption and bone accretion. However, a mechanism that explains the unique adolescent Ca metabolism has not yet been elucidated. Review: Dietary factors that enhance gastrointestinal Ca absorption may increase the available Ca pool usable for bone accretion, and a specific hormone may direct optimal Ca utilization to maximize peak bone mass. IGF-1 is an endocrine hormone whose levels peak during adolescence and increase fractional Ca absorption and bone Ca accretion. Prebiotics, generally obtained from dietary sources, have been reported to exert a beneficial effect on Ca absorption via microbiota activity. We selected and reviewed three candidates that could be used to propose a comprehensive Ca metabolic model for optimal Ca absorption and peak bone mass in adolescents. Modeling: Modeling has been used to investigate Ca metabolism and its regulators. Herein, we reviewed previous Ca modeling studies. Based on this review, we proposed a method for developing a comprehensive model that includes regulatory effectors of IGF-1 and prebiotics.

Keywords

References

  1. Abraham, A. K., D. E. Mager, X. Gao, M. Li, D. R. Healy and T. S. Maurer. 2009. Mechanism-based pharmacokinetic/pharmacodynamic model of parathyroid hormonecalcium homeostasis in rats and humans. The Journal of pharmacology and experimental therapeutics 330: 169-78. https://doi.org/10.1124/jpet.109.152033
  2. Awumey, E. M and R. D. Bukoski. 2006. Cellular functions and fluxes of calcium. In: Calcium in Human Health, eds. C.M. Weaver and R.P. Heaney, pp. 13-5. Totowa, USA: Humana Press.
  3. Bik, E. M., P. B. Eckburg, S. R. Gill, K. E. Nelson, E. A. Purdom, F. Francois, G. Perez-Perez, M. J. Blaser and D. A. Relman. 2006. Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences of the United States of America 103:732-7.
  4. Bouhnik, Y., L. Raskine, G. Simoneau, E. Vicaut, C. Neut, B. Flourie, F. Brouns and F. R. Bornet. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. American Journal of Clinical Nutrition 80:1658-64. https://doi.org/10.1093/ajcn/80.6.1658
  5. Bourrin, S., P. Ammann, J. P. Bonjour and R. Rizzoli. 2000. Dietary protein restriction lowers plasma insulin-like growth factor I (IGF-I), impairs cortical bone formation, and induces osteoblastic resistance to IGF-I in adult female rats. Endocrinology 141:3149-55. https://doi.org/10.1210/endo.141.9.7633
  6. Braun, M., B. R. Martin, M. Kern, G. P. McCabe, M. Peacock, Z. Jiang and C. M. Weaver. 2006. Calcium retention in adolescent boys on a range of controlled calcium intakes. American Journal of Clinical Nutrition 84:414-8.
  7. Braun, M., C. Palacios, K. Wigertz, L. A. Jackman, R. J. Bryant, L. D. McCabe, B. R. Martin, G. P. McCabe, M. Peacock and C.M. Weaver. 2007. Racial differences in skeletal calcium retention in adolescent girls with varied controlled calcium intakes. American Journal of Clinical Nutrition 85:1657-63. https://doi.org/10.1093/ajcn/85.6.1657
  8. Bronner, F., D. Pansu and W. D. Stein. 1986. An analysis of intestinal calcium transport across the rat intestine. American Journal of Physiology 250:G561-9.
  9. Bryant, R. J., M. E. Wastney, B. R. Martin, O. Wood, G. P. McCabe, M. Morshidi, D. L. Smith, M. Peacock and C. M. Weaver. 2003. Racial differences in bone turnover and calcium metabolism in adolescent females. Journal of Clinical Endocrinology and Metabolism 88:1043-7. https://doi.org/10.1210/jc.2002-021367
  10. Budek, A. Z., C. Hoppe, K. F. Michaelsen, S. Bugel and C. Molgaard. 2007. Associations of total, dairy, and meat protein with markers for bone turnover in healthy, prepubertal boys. Journal of Nutrition 137:930-4. https://doi.org/10.1093/jn/137.4.930
  11. Cadogan, J., R. Eastell, N. Jones and M. E. Barker. 1997. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. British Medical Journal 315:1255-60. https://doi.org/10.1136/bmj.315.7118.1255
  12. Chonan, O and M. Watanuki. 1995. Effect of galactooligosaccharides on calcium absorption in rats. Journal of Nutritional Science and Vitaminology (Tokyo) 41: 95-104. https://doi.org/10.3177/jnsv.41.95
  13. Chonan, O and M. Watanuki. 1996. The effect of 6'-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. International Journal for Vitamin and Nutrition Research 66:244-9.
  14. Chonan, O., K. Matsumoto and M. Watanuki. 1995. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Bioscience, Biotechnology, and Biochemistry 59:236-9. https://doi.org/10.1271/bbb.59.236
  15. Chonan, O., R. Takahashi and M. Watanuki. 2001. Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed beta1-4 linked galactooligosaccharides. Bioscience, Biotechnology, and Biochemistry 65:1872-5. https://doi.org/10.1271/bbb.65.1872
  16. Dawson-Hughes, B and S. S. Harris. 2002. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. American Journal of Clinical Nutrition 75:773-9. https://doi.org/10.1093/ajcn/75.4.773
  17. Doty, S. E and R. C. Seagrave. 2000. Human water, sodium, and calcium regulation during space flight and exercise. Acta Astronautica 46:591-604. https://doi.org/10.1016/S0094-5765(00)00020-5
  18. Egert, M., A. A. de Graaf, H. Smidt, W. M. de Vos and K. Venema. 2006. Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology 14:86-91. https://doi.org/10.1016/j.tim.2005.12.007
  19. El-Samad, H., J. P. Goff and M. Khammash. 2002. Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. Journal of Theoretical Biology 214:17-29. https://doi.org/10.1006/jtbi.2001.2422
  20. Engelmann, D. T., T. L. Sie, H. H. Draper and R. R. Bell. 1975. Effect of a high protein intake on calcium metabolism in the rat. Journal of Nutrition 105:475-83. https://doi.org/10.1093/jn/105.4.475
  21. Fatayerji, D., E. B. Mawer and R. Eastell. 2000. The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. Journal of Clinical Endocrinology and Metabolism 85:4657-62.
  22. Fenton, T. R., M. Eliasziw, A. W. Lyon, S. C. Tough and D. A. Hanley. 2008. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. American Journal of Clinical Nutrition 88:1159-66. https://doi.org/10.1093/ajcn/88.4.1159
  23. Galvanin, F., S. Macchietto and F. Bezzo. 2007. Model-based design of parallel experiments. Industrial & Engineering Chemistry Research 46:871-82. https://doi.org/10.1021/ie0611406
  24. Heaney, R. P., S. Abrams, B. Dawson-Hughes, A. Looker, R. Marcus, V. Matkovic and C. M. Weaver. 2000. Peak bone mass. Osteoporosis International 11:985-1009.
  25. Heaney, R. P., D. A. McCarron, B. Dawson-Hughes, S. Oparil, S. L. Berga, J. S. Stern, S. I. Barr and C. J. Rosen. 1999. Dietary changes favorably affect bone remodeling in older adults. Journal of the American Dietetic Association 99:1228-33. https://doi.org/10.1016/S0002-8223(99)00302-8
  26. Hill, K. M., M. Braun, M. Kern, B. R. Martin, J. W. Navalta, D. A. Sedlock, L. McCabe, G. P. McCabe, M. Peacock and C. M. Weaver. 2008. Predictors of calcium retention in adolescent boys. Journal of Clinical Endocrinology and Metabolism 93:4743-8. https://doi.org/10.1210/jc.2008-0957
  27. Hunt, J. R., L. K. Johnson and Z. K. Fariba Roughead. 2009. Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. American Journal of Clinical Nutrition 89:1357-65. https://doi.org/10.3945/ajcn.2008.27238
  28. Hurwitz, S., S. Fishman and H. Talpaz, H. 1987. Calcium dynamics: a model system approach. Journal of Nutrition 117:791-6. https://doi.org/10.1093/jn/117.4.791
  29. Jackman, L. A., S. S. Millane, B. R. Martin, O. B. Wood, G. P. McCabe, M. Peacock and C. M. Weaver. 1997. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. American Journal of Clinical Nutrition 66:327-33. https://doi.org/10.1093/ajcn/66.2.327
  30. Kerstetter, J. E., K. O. O'Brien, D. M. Caseria, D. E. Wall and K. L. Insogna. 2005. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. Journal of Clinical Endocrinology and Metabolism 90:26-31. https://doi.org/10.1210/jc.2004-0179
  31. Kleerebezem, M and E. E. Vaughan. 2009. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annual Review of Microbiology 63:269-90. https://doi.org/10.1146/annurev.micro.091208.073341
  32. Lee, W. H and B. K. Cho. 2012. Review on application of biosystem modeling: introducing 3 model-based approaches in studying Ca metabolism. Journal of Biosystems Engineering 37:258-64. https://doi.org/10.5307/JBE.2012.37.4.258
  33. Lee, W. H and B. K. Cho. 2013. Mechanistic modeling in biosystem engineering: a review on mechanistic models of calcium metabolism. Food Engineering Progress 17:48-54.
  34. Lee, W. H., M. Wastney, G. Jackson, B. Martin and C. Weaver. 2011. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Analytical and Bioanalytical Chemistry 399:1613-22. https://doi.org/10.1007/s00216-010-4454-5
  35. Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley and J. M. Rothberg. 2005. Genome sequencing in microfabricated high- density picolitre reactors. Nature 437:376-80. https://doi.org/10.1038/nature03959
  36. Martin, B. R., M. M. Braun, K. Wigertz, R. Bryant, Y. Zhao, W. Lee, A. Kempa-Steczko and C. M. Weaver. 2010. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. American Journal of Clinical Nutrition 29:382-6. https://doi.org/10.1080/07315724.2010.10719855
  37. Matkovic, V and J.Z. Ilich. 1993. Calcium requirements for growth: are current recommendations adequate? Nutrition reviews 51:171-80.
  38. Matkovic, V., D. Fontana, C. Tominac, P. Goel and C. H. Chesnut III. 1990. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. American Journal of Clinical Nutrition 52:878-88. https://doi.org/10.1093/ajcn/52.5.878
  39. Mitchell, M. L., R. J. Hermos, A. Schoepfer and J. M. Orson. 1990. Reference ranges for insulin-like growth factor-1 in healthy children and adolescents, determined with filter-paper blood specimens. Clinical Chemistry 36: 2138-9.
  40. Nesbitt, T and M. K. Drezner. 1993. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity. Endocrinology 132:133-8. https://doi.org/10.1210/endo.132.1.8419119
  41. Perez-Conesa, D., G. Lopez and G. Ros. 2007. Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats. Journal of the Science of Food and Agriculture 87:1059-68. https://doi.org/10.1002/jsfa.2812
  42. Park, C. Y., K. M. Hill, A. E. Elble, B. R. Martin, L. A. DiMeglio, M. Peacock, G. P. McCabe and C. M. Weaver. 2010. Daily supplementation with 25 mu g cholecalciferol does not Increase calcium absorption or skeletal retention in adolescent girls with low serum 25-hydroxyvitamin D. Journal of Nutrition 140:2139-44. https://doi.org/10.3945/jn.110.124891
  43. Perault-Staub, A. M., P. Tracqui and J. F. Staub. 1992. Modelling of in vivo calcium metabolism. I. Optimal cooperation between constant and rhythmic behaviours. Acta Biotheoretica 40:95-102. https://doi.org/10.1007/BF00168138
  44. Peterson, M. C and M. M. Riggs. 2010. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49-63. https://doi.org/10.1016/j.bone.2009.08.053
  45. Raposo, J. F., L. G. Sobrinho and H. G. Ferreira. 2002. A minimal mathematical model of calcium homeostasis. Journal of Clinical Endocrinology and Metabolism 87:4330-40. https://doi.org/10.1210/jc.2002-011870
  46. Raschka, L and H. Daniel. 2005. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37:728-35. https://doi.org/10.1016/j.bone.2005.05.015
  47. Rastall, R. A., G. R. Gibson, H. S. Gill, F. Guarner, T. R. Klaenhammer, B. Pot, G. Reid, I. R. Rowland and M. E. Sanders. 2005. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiology Ecology 52:145-52. https://doi.org/10.1016/j.femsec.2005.01.003
  48. Russo, A., L. Holmquist and A. Elixhauser, 2009. U.S. Hospitalizations Involving Osteoporosis and Injury, 2006. Agency for Healthcar Research and Quality. Available at: http://www.silverbook.org.
  49. Scheppach, W., P. Bartram, A. Richter, F. Richter, H. Liepold, G. Dusel, G. Hofstetter, J. Ruthlein and H. Kasper. 1992. Effect of short-chain fatty acids on the human colonic mucosa in vitro. Journal of Parenteral and Enteral Nutrition 16:43-8. https://doi.org/10.1177/014860719201600143
  50. Schurch, M. A., R. Rizzoli, D. Slosman, L. Vadas, P. Vergnaud and J. P. Bonjour. 1998. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Annals of Internal Medicine 128:801-9. https://doi.org/10.7326/0003-4819-128-10-199805150-00002
  51. Sheikh, M. S., L. R. Schiller and J. S. Fordtran. 1990. In vivo intestinal absorption of calcium in humans. Mineral and electrolyte metabolism 16:130-46.
  52. Shrestha, R. P., C. V. Hollot, S. R. Chipkin, C. P. Schmitt and Y. Chait. 2010. A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans. Mathematical Biosciences 226:46-57. https://doi.org/10.1016/j.mbs.2010.04.001
  53. Slavin, J. 2013. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5:1417-35. https://doi.org/10.3390/nu5041417
  54. Spence, L. A., E. R. Lipscomb, J. Cadogan, B. Martin, M. E. Wastney, M. Peacock and C. M. Weaver. 2005. The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: a randomized crossover study. American Journal of Clinical Nutrition 81:916-22. https://doi.org/10.1093/ajcn/81.4.916
  55. Tracqui, P., J. F. Staub and A. M. Perault-Staub. 1992. Modelling of in vivo calcium metabolism. II. Minimal structure or maximum dynamic diversity: the interplay of biological constraints. Acta Biotheoretica 40:103-11. https://doi.org/10.1007/BF00168139
  56. Vatanparast, H., D. A. Bailey, A. D. Baxter-Jones and S. J. Whiting. 2007. The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake. Journal of Nutrition 137: 2674-9. https://doi.org/10.1093/jn/137.12.2674
  57. Wastney, M. E., Y. Zhao and S. M. Smith. 2005. Modelling human calcium dynamics as a mechanism for exploring changes in calcium homeostasis during space flight. In: Mathematical Modelling in Nutrition and Toxicology, eds. J. Hargrove and C. Berdanier, pp. 157-70. Athens, GA, USA: Mathematical Biology Press, Athens.
  58. Wastney, M. E., B. H. Patterson, O. A. Linares, P. C. Greif and R. C. Boston. 1999. Investigating Biological Systems Using Modeling: Strategies and Software. San Diego: Academic Press.
  59. Wastney, M. E., J. Ng, D. Smith, B. R. Martin, M. Peacock and C. M. Weaver. 1996. Differences in calcium kinetics between adolescent girls and young women. American Journal of Physiology 271:R208-16.
  60. Weaver, C. M., B. R. Martin, J. A. Story, I. Hutchinson and L. Sanders. 2010. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. Journal of Agricultural and Food Chemistry 58:8952-7. https://doi.org/10.1021/jf904086d
  61. Weaver, C. M., B. R. Martin, K. L. Plawecki, M. Peacock, O. B. Wood, D. L. Smith and M. E. Wastney. 1995. Differences in calcium metabolism between adolescent and adult females. American Journal of Clinical Nutrition 61:577-81. https://doi.org/10.1093/ajcn/61.3.577
  62. Weaver, C. M., M. Peacock, B. R. Martin, G. P. McCabe, J. Zhao, D. L. Smith and M. E. Wastney. 1997. Quantification of biochemical markers of bone turnover by kinetic measures of bone formation and resorption in young healthy females. Journal of Bone and Mineral Research 12:1714-20. https://doi.org/10.1359/jbmr.1997.12.10.1714
  63. Weaver, C. M., B. R. Martin, C. H. Nakatsu, A. P. Armstrong, A. Clavijo, L. D. McCabe, G. P. McCabe, S. Duignan, M. H. C. Schoterman and E. G. van den Heuvel. 2011. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. Journal of Agricultural and Food Chemistry 59:6501-10. https://doi.org/10.1021/jf2009777
  64. Whisner, C. M., B. R. Martin, C. H. Nakatsu, G. P. McCabe, L. D. McCabe, M. Peacock and C. M. Weaver. 2014. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. British Journal of Nutrition 112:446-56. https://doi.org/10.1017/S0007114514000981
  65. Whisner, C. M., B. R. Martin, M. H. Schoterman, C. H. Nakatsu, L. D. McCabe, G. P. McCabe, M. E. Wastney, E. G. van den Heuvel and C. M. Weaver. 2013. Galactooligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind crossover trial. British Journal of Nutrition 110:1292-303. https://doi.org/10.1017/S000711451300055X
  66. Wigertz, K., C. Palacios, L. A. Jackman, B. R. Martin, L. D. McCabe, G. P. McCabe, M. Peacock, J. H. Pratt and C. M. Weaver. 2005. Racial differences in calcium retention in response to dietary salt in adolescent girls. American Journal of Clinical Nutrition 81:845-50. https://doi.org/10.1093/ajcn/81.4.845
  67. Wright, N. M., N. Papadea, B. Wentz, B. Hollis, S. Willi and N. H. Bell. 1997. Increased serum 1,25-dihydroxyvitamin D after growth hormone administration is not parathyroid hormone-mediated. Calcified Tissue International 61: 101-3. https://doi.org/10.1007/s002239900303
  68. Wu, L., B. R. Martin, M. M. Braun, M. E. Wastney, G. P. McCabe, L. D. McCabe, L. A. DiMeglio, M. Peacock and C. M. Weaver. 2010. Calcium requirements and metabolism in Chinese-American boys and girls. Journal of Bone and Mineral Research 25:1842-9. https://doi.org/10.1002/jbmr.76
  69. Yakar, S and C. J. Rosen. 2003. From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Experimental Biology and Medicine (Maywood) 228:245-52. https://doi.org/10.1177/153537020322800302
  70. Yakar, S., H. W. Courtland and D. Clemmons. 2010. IGF-1 and bone: New discoveries from mouse models. Journal of Bone and Mineral Research 25:2267-76. https://doi.org/10.1002/jbmr.253
  71. Zhang, Q., M. E. Wastney, C. J. Rosen, W. G. Beamer and C. M. Weaver. 2011. Insulin-like growth factor-1 increases bone calcium accumulation only during rapid growth in female rats. Journal of Nutrition 141:2010-6. https://doi.org/10.3945/jn.111.142679
  72. Zhang, Q., G. Ma, H. Greenfield, K. Zhu, X. Du, L. H. Foo, X. Hu and D. R. Fraser. 2010. The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes. British Journal of Nutrition 103:714-23. https://doi.org/10.1017/S0007114509992303