• Title/Summary/Keyword: K(G)-algebra

Search Result 128, Processing Time 0.019 seconds

CURVES AND VECTOR BUNDLES ON QUARTIC THREEFOLDS

  • Arrondo, Enrique;Madonna, Carlo G.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.589-607
    • /
    • 2009
  • In this paper we study arithmetically Cohen-Macaulay (ACM for short) vector bundles $\varepsilon$ of rank k $\geq$ 3 on hypersurfaces $X_r\;{\subset}\;{\mathbb{P}}^4$ of degree r $\geq$ 1. We consider here mainly the case of degree r = 4, which is the first unknown case in literature. Under some natural conditions for the bundle $\varepsilon$ we derive a list of possible Chern classes ($c_1$, $c_2$, $c_3$) which may arise in the cases of rank k = 3 and k = 4, when r = 4 and we give several examples.

A NOTE ON PATH-CONNECTED ORTHOMODULAR LATTICES

  • Park, Eun-Soon
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.217-225
    • /
    • 1996
  • An orthomodular lattice (abbreviated by OML) is an ortholattice L which satisfies the orthomodular law: if x $\leq$ y, then $y = x \vee (x' \wedge y)$ [5]. A Boolean algebra B is an ortholattice satisfying the distributive law : $x \vee (g \wedge z) = (x \vee y) \wedge (x \vee z) \forall x, y, z \in B$.

  • PDF

(SKEW) FILTERS IN RESIDUATED SKEW LATTICES: PART II

  • Koohnavard, Roghayeh;Saeid, Arsham Borumand
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.401-431
    • /
    • 2018
  • In this paper, some kinds of (skew) filters are defined and are studied in residuated skew lattices. Some relations are got between these filters and quotient algebras constructed via these filters. The Green filter is defined which establishes a connection between residuated lattices and residuated skew lattices. It is investigated that relationships between Green filter and other types of filters in residuated skew lattices and the relationship between residuated skew lattice and other skew structures are studied. It is proved that for a residuated skew lattice, skew Hilbert algebra and skew G-algebra are equivalent too.

Normal Interpolation on AX = Y in CSL-algebra AlgL

  • Jo, Young Soo;Kang, Joo Ho
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.293-299
    • /
    • 2005
  • Let ${\cal{L}}$ be a commutative subspace lattice on a Hilbert space ${\cal{H}}$ and X and Y be operators on ${\cal{H}}$. Let $${\cal{M}}_X=\{{\sum}{\limits_{i=1}^n}E_{i}Xf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}$$ and $${\cal{M}}_Y=\{{\sum}{\limits_{i=1}^n}E_{i}Yf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}.$$ Then the following are equivalent. (i) There is an operator A in $Alg{\cal{L}}$ such that AX = Y, Ag = 0 for all g in ${\overline{{\cal{M}}_X}}^{\bot},A^*A=AA^*$ and every E in ${\cal{L}}$ reduces A. (ii) ${\sup}\;\{K(E, f)\;:\;n\;{\in}\;{\mathbb{N}},f_i\;{\in}\;{\cal{H}}\;and\;E_i\;{\in}\;{\cal{L}}\}\;<\;\infty,\;{\overline{{\cal{M}}_Y}}\;{\subset}\;{\overline{{\cal{M}}_X}}$and there is an operator T acting on ${\cal{H}}$ such that ${\langle}EX\;f,Tg{\rangle}={\langle}EY\;f,Xg{\rangle}$ and ${\langle}ET\;f,Tg{\rangle}={\langle}EY\;f,Yg{\rangle}$ for all f, g in ${\cal{H}}$ and E in ${\cal{L}}$, where $K(E,\;f)\;=\;{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Y\;f_{i}{\parallel}/{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Xf_{i}{\parallel}$.

  • PDF

RIEMANNIAN SUBMERSIONS OF SO0(2, 1)

  • Byun, Taechang
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1407-1419
    • /
    • 2021
  • The Iwasawa decomposition NAK of the Lie group G = SO0(2, 1) with a left invariant metric produces Riemannian submersions G → N\G, G → A\G, G → K\G, and G → NA\G. For each of these, we calculate the curvature of the base space and the lifting of a simple closed curve to the total space G. Especially in the first case, the base space has a constant curvature 0; the holonomy displacement along a (null-homotopic) simple closed curve in the base space is determined only by the Euclidean area of the region surrounded by the curve.

STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.443-456
    • /
    • 2005
  • Let G be a Lie group, let L(G) be its Lie algebra, and let exp : $L(G){\rightarrow}G$ denote the exponential mapping. For $S{\subseteq}G$, we define the tangent set of S by $L(S)\;=\;\{X\;{\in}\;L(G)\;:\;exp(tX)\;\in\;S\;for\;all\;t\;{\geq}\;0\}$. We say that a semigroup S is strictly infinitesimally generated if S is the same as the semigroup generated by exp(L(S)). We find a tangent set of the semigroup of all non-singular totally positive matrices and show that the semigroup is strictly infinitesimally generated by the tangent set of the semigroup. This generalizes the familiar relationships between connected Lie subgroups of G and their Lie algebras

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

ALGEBRAIC STRUCTURES IN A PRINCIPAL FIBRE BUNDLE

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • Let $P(M,G,{\pi})=:P$ be a principal fibre bundle with structure Lie group G over a base manifold M. In this paper we get the following facts: 1. The tangent bundle TG of the structure Lie group G in $P(M,G,{\pi})=:P$ is a Lie group. 2. The Lie algebra ${\mathcal{g}}=T_eG$ is a normal subgroup of the Lie group TG. 3. $TP(TM,TG,{\pi}_*)=:TP$ is a principal fibre bundle with structure Lie group TG and projection ${\pi}_*$ over base manifold TM, where ${\pi}_*$ is the differential map of the projection ${\pi}$ of P onto M. 4. for a Lie group $H,\;TH=H{\circ}T_eH=T_eH{\circ}H=TH$ and $H{\cap}T_eH=\{e\}$, but H is not a normal subgroup of the group TH in general.

  • PDF

Special Function Inverse Series Pairs

  • Alsardary, Salar Yaseen;Gould, Henry Wadsworth
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.177-193
    • /
    • 2010
  • Working with the various special functions of mathematical physics and applied mathematics we often encounter inverse relations of the type $F_n(x)=\sum\limits_{k=0}^{n}A^n_kG_k(x)$ and $ G_n(x)=\sum\limits_{k=0}^{n}B_k^nF_k(x)$, where 0, 1, 2,$\cdots$. Here $F_n(x)$, $G_n(x)$ denote special polynomial functions, and $A_k^n$, $B_k^n$ denote coefficients found by use of the orthogonal properties of $F_n(x)$ and $G_n(x)$, or by skillful series manipulations. Typically $G_n(x)=x^n$ and $F_n(x)=P_n(x)$, the n-th Legendre polynomial. We give a collection of inverse series pairs of the type $f(n)=\sum\limits_{k=0}^{n}A_k^ng(k)$ if and only if $g(n)=\sum\limits_{k=0}^{n}B_k^nf(k)$, each pair being based on some reasonably well-known special function. We also state and prove an interesting generalization of a theorem of Rainville in this form.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.