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Abstract. Working with the various special functions of mathematical physics and ap-
plied mathematics we often encounter inverse relations of the type

Fn(x) =

n∑
k=0

An
kGk(x) and Gn(x) =

n∑
k=0

Bn
kFk(x),

where n = 0, 1, 2, · · · . Here Fn(x), Gn(x) denote special polynomial functions, and An
k , B

n
k

denote coefficients found by use of the orthogonal properties of Fn(x) and Gn(x), or by
skillful series manipulations. Typically Gn(x) = xn and Fn(x) = Pn(x), the n-th Legendre
polynomial. We give a collection of inverse series pairs of the type

f(n) =

n∑
k=0

An
kg(k) if and only if g(n) =

n∑
k=0

Bn
k f(k),

each pair being based on some reasonably well-known special function. We also state and

prove an interesting generalization of a theorem of Rainville in this form.

1. Introduction

When working with the various special functions of mathematical physics and
applied mathematics we often encounter inverse relations of the following type:

(1) Fn(x) =

n∑
k=0

An
kx

k,

(2) xn =
n∑

k=0

Bn
kFk(x),
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where n = 0, 1, 2, · · · . Here Fn(x) will denote one of the special functions and Bn
k

will denote the coefficients found by use of some orthogonal property of Fn(x) or
by skillful series manipulations.

In the present paper we will give a collection of inverse pairs of this type, each
pair being based on some reasonably well-known special function.

2. Main Results

Validity of the pair (1)-(2) is equivalent to the validity of the orthogonality relations

(3)
i∑

k=j

Bi
kA

k
j = δij , 0 ≤ j ≤ i ≤ n

and

(4)

i∑
k=j

Ai
kB

k
j = δij , 0 ≤ j ≤ i ≤ n.

More precisely, (1) implies (2) in virtue of (3), and (2) implies (1) in virtue of (4).
The reader should note that (3) and (4) imply one another. This is easily seen
when we use the language of matrix theory. Define two matrices by A = [Ai

j ] and

B = [Bi
j ], where 0 ≤ i, j ≤ n. Then AB = [Ci

j ], where

(5) Ci
j =

n∑
k=0

Ai
kB

k
j = δij .

When AB = I then A and B are non-singular and each has a unique inverse. It
follows that B−1 = A and A−1 = B. Suppose BC = I. Then A(BC) = A(I) = A.
But A(BC) = (AB)C = IC = C, so we find that C = A. From this it is seen that
when (5) is true then also

(6) Ci
j =

n∑
k=0

Bi
kA

k
j = δij .

Similarly (6) implies (5).
If we define

(7) f(i) =

n∑
k=0

Ai
kg(k), 0 ≤ i ≤ n,

then, equivalently,

(8) g(i) =
n∑

k=0

Bi
kf(k), 0 ≤ i ≤ n.
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More precisely, (7) implies (8) in virtue of (5), and (8) implies (7) in virtue of (6).
If we assume that we have triangular matrices, i.e., in case Ai

j = Bi
j = 0 whenever

j > i, then the inverse pair (7)-(8) may be stated in the following form.

Theorem 2.1.

(9) f(n) =
n∑

k=0

An
kg(k),

if and only if

(10) g(n) =

n∑
k=0

Bn
k f(k).

Moreover, the pair (1)-(2) is equivalent to this pair.

Now for some examples to make up our list of special function inverse series
pairs.

When we start with a special function like the Legendre polynomial

(11) Pn(x) =

[n/2]∑
k=0

(−1)k (2n− 2k)!

k!(n− k)!(n− 2k)!
x(n−2k),

and use the standard orthogonality property

(12)

∫ +1

−1

Pn(x)Pk(x)dx =
2

2n+ 1
δnk ,

or other series manipulates, to obtain the expansion [10, p. 181, eq. (4)] (which we
write using a different factorial notation)

(13) xn =

[n/2]∑
k=0

n!(n− k)!
k!(2n− 2k)!

· 2n− 4k + 1

2n− 2k + 1
Pn−2k(x).

We actually have more general inverse pair

(14) f(n) =

[n/2]∑
k=0

(−1)k (2n− 2k)!

k!(n− k)!(n− 2k)!
g(n− 2k)

if and only if

(15) g(n) =

[n/2]∑
k=0

n!(n− k)!
k!(2n− 2k)!

· 2n− 4k + 1

2n− 2k + 1
f(n− 2k)

which we will call Legendre inverse pairs.
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Another example is afforded by the Hermite polynomials

(16) Hn(x) =

[n/2]∑
k=0

(−1)k n!

k!(n− 2k)!
(2x)n−2k,

and the well-known expansion

(17) (2x)n =

[n/2]∑
k=0

(−1)k n!

k!(n− 2k)!
Hn−2k(x).

The expansion (17) is sometimes found in books on special functions as a conse-
quence of the orthogonality

(18)

∫ +∞

−∞
Hn(x)Hk(x) exp(−x2)dx = 2nn!

√
πδnk .

Rainville [10, p. 194] finds (17) by coefficient comparisons in generating function
identities. It follows that quite generally

(19) f(n) =

[n/2]∑
k=0

(−1)k n!

k!(n− 2k)!
g(n− 2k)

if and only if

(20) g(n) =

[n/2]∑
k=0

n!

k!(n− 2k)!
f(n− 2k).

We call the pair (19)-(20) Hermite inverse pairs. The pair (19)-(20) may be proved
without using (18) by means of any easy combinatorial identity. In fact, we can
prove the more general result which we will call generalized Hermite inverse pairs.

Theorem 2.2.

(21) f(n) =

[n/r]∑
k=0

(−1)k n!

k!(n− rk)!
g(n− rk)

if and only if

(22) g(n) =

[n/r]∑
k=0

n!

k!(n− rk)!
f(n− rk),

where r = 1, 2, 3, · · · .
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Proof. We illustrate the proof by showing how (21) implies (22):

[n/r]∑
k=0

n!

k!(n− rk)!
f(n− rk)

=
∑

0≤k≤n/r

n!

k!(n− rk)!
∑

0≤j≤(n−rk)/r

(−1)j (n− rk)!
j!(n− rk − rj)!

g(n− rk − rj)

(use the substitution j ← j − k)

=
∑

0≤k≤n/r

n!

k!

∑
k≤j≤n/r

(−1)j−k 1

(j − k)!(n− rj)!
g(n− rj)

=
∑

0≤j≤n/r

n!

j!(n− rj)!
g(n− rj)

∑
0≤k≤j

(−1)j−k j!

k!(j − k)!

=
∑

0≤j≤n/r

n!

j!(n− rj)!
g(n− rj)

∑
0≤k≤j

(−1)j−k

(
j

k

)

=
∑

0≤j≤n/r

n!

j!(n− rj)!
g(n− rj)(1− 1)j

=
∑

0≤j≤n/r

n!

j!(n− rj)!
g(n− rj)δj0

= g(n). �
Two extensions of Hermite polynomials, Hr

n(x) and grn(x, h) were studied by
Gould and Hopper [3]. The second of these was defined by

(23) grn(x, h) =

[n/r]∑
k=0

n!

k!(n− rk)!
hkxn−rk.

The pair (21)-(22) immediately inverts (23) to yield

(24) xn =

[n/r]∑
k=0

(−1)k n!

k!(n− rk)!
hkgrn−rk(x, h).

This is the reason for calling (21)-(22) a generalized Hermite inverse pair. Relation
(24) was omitted in [3] but does follow from an operational expansion given in [3, eq.
(6.18)].

The case r = 1 of the pair (21)-(22) is more widely known when written in the
simple binomial inverse form

(25) f(n) =
n∑

k=0

(−1)n−k

(
n

k

)
g(k)
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if and only if

(26) g(n) =
n∑

k=0

(
n

k

)
f(k).

The Legendre inverse pair (14)-(15) may be extended to become a generalized Hum-
bert polynomial inverse pair

(27) F (n) =

[n/m]∑
k=0

(
p− n+mk

k

)
f(n−mk)

if and only if

(28) f(n) =

[n/m]∑
k=0

(−1)k
(
p− n+ k

k

)
p+mk − n
p+ k − n

F (n−mk).

This was proved by Gould in [4, (6.3)-(6.4)]. A more elegant form was also given [4,
(6.6)-(6.7)]:

(29) F (n) =

[n/m]∑
k=0

Ak(p− n,m)f(n−mk)

if and only if

(30) f(n) =

[n/m]∑
k=0

(−1)kAk(p− n, 1)F (n−mk),

where the Rothe-Hagen coefficients are defined by

(31) Ak(a, b) =
a

a+ bk

(
a+ bk

k

)
.

Still more general forms studied by Gould were summarized and extended in [7].
The form in which we state the Legendre inverse pair and the generalized Hum-

bert polynomial series inverse pair is slightly different than the way in which Rior-
dan [11, 12] or Egorychev [2, Chap. 3, pp. 87-109] would state these formulas. We
wish to give inverse pairs in a form so that a minimum of manipulation will give
the special polynomial function forms which motivate the general pairs.

A different extension of the Legendre polynomial is the Jacobi polynomial, for
which three well-known explicit representations [10, p. 255] are:

(32) P (α,β)
n (x) =

n∑
k=0

(1 + α)n(1 + β)n
k!(n− k)!(1 + α)k(1 + β)n−k

(
x− 1

2

)k (
x+ 1

2

)n−k

,
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(33) P (α,β)
n (x) =

n∑
k=0

(1 + α)n(1 + α+ β)n+k

k!(n− k)!(1 + α)k(1 + α+ β)n

(
x− 1

2

)k

,

(34) P (α,β)
n (x) =

n∑
k=0

(−1)n−k (1 + β)n(1 + α+ β)n+k

k!(n− k)!(1 + β)k(1 + α+ β)n

(
x+ 1

2

)k

,

where the ascending factorial notation (α)n = α(α+ 1) · · · (α+ n− 1), n ≥ 1, with
(α)0 = 1, is used, α being any complex number.
Relation (33) may be recast in the binomial coefficient form

(35) P (α,β)
n (x) =

n∑
k=0

(−1)k
(
α+ β + n+ k

k

)(
α+ n

n− k

)(
1− x
2

)k

,

and similar recasting can be done easily for the others. The inverse of (33) as given
in [10, p. 262] is

(36)

(
1− x
2

)n

= (1 + α)n

n∑
k=0

(−n)k(1 + α+ β + 2k)(1 + α+ β)k
(1 + α+ β)n+1+k(1 + α)k

P
(α,β)
k (x).

Thus one general form of Jacobi polynomial inverse pairs may be stated as follows:

(37) F (n) =

n∑
k=0

(−1)k (1 + α)n(1 + α+ β)n+k

k!(n− k)!(1 + α)k(1 + α+ β)n
G(k)

if and only if

(38) G(n) = (1 + α)n

n∑
k=0

(−n)k(1 + α+ β + 2k)(1 + α+ β)k
(1 + α+ β)n+1+k(1 + α)k

F (k).

There seems to be no simple way (without using a double summation) to write
the Jacobi polynomial directly as a linear combination of powers of x. We can, of
course, write

(39) P (α,β)
n (x) =

n∑
j=0

Q(α,β)
n (j)xj

where

(40) Q(α,β)
n (j) =

n∑
k=j

(−1)j
(
α+ β + n+ k

k

)(
α+ n

n− k

)(
k

j

)
2−k.

For a comparable inverse of (39), we may use the standard orthogonality technique
[10] to establish that

(41) xn =
n∑

k=0

An
k (α, β)P

(α,β)
k (x)
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where

(42) An
k (α, β) =

1

gk

∫ +1

−1

xn(1− x)α(1 + x)βP (α,β)
n (x)dx

with

(43) gk =
21+α+βΓ(1 + α+ k)Γ(1 + β + k)

k!(1 + α+ β + 2k)Γ(1 + α+ β + k)
.

With this approach we have the following general form for a Jacobi polynomial
inverse pair:

(44) F (n) =
n∑

k=0

Q(α,β)
n (k)G(k)

if and only if

(45) G(n) =

n∑
k=0

An
k (α, β)F (k).

The ordinary, classical Laguerre polynomials have the form

(46) Ln(x) =
n∑

k=0

(−1)k
(
n

k

)
xk

k!

with inverse given by

(47)
xn

n!
=

n∑
k=0

(−1)k
(
n

k

)
Lk(x),

so that the Laguerre polynomial inverse pairs arising from these are nothing more
than the binomial inverse pair (25)-(26).

Generalized Laguerre polynomials have the form

(48) Lα
n(x) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!

with inverse having the form

(49)
xn

n!
=

n∑
k=0

(−1)k
(
n+ α

n− k

)
Lα
k (x).

The general Laguerre inverse pair for these is merely a slight modification of the
binomial inverse pair (25)-(26) which may written in the form

(50) f(n) =
n∑

k=0

(−1)k
(
n+ α

n− k

)
g(k)
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if and only if

(51) g(n) =
n∑

k=0

(−1)k
(
n+ α

n− k

)
f(k).

We turn now to inverse pairs suggested by the Bernoulli numbers and polyno-
mials. The classical exponential generating function of the Bernoulli polynomials
is

(52)
text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

The Bernoulli numbers are defined then as Bn = Bn(0).
It is not too difficult to show that

Bn(x) =
n∑

k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n.

This formula is not as well-known as it should be is often forgotten. See Gould [6]
for remarks about the history of this formula when x = 0.

Theorem 2.3.

(53) Bn(x) =
n∑

k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n.

Proof. Formula (53) may be derived from the generating function (52) as follows.

Recall that log(1 + z) = z − z2

2 + z3

3 −+ · · · , valid for −1 < z ≤ 1. Using this as a
formal power series we find

t = log(et) = log
(
1 + (et − 1)

)
=

∞∑
k=0

(−1)k (e
t − 1)

k+1

k + 1
,

so that

text

et − 1
= ext

∞∑
k=0

(−1)k (e
t − 1)k

k + 1

=

∞∑
k=0

(−1)k

k + 1

k∑
j=0

(−1)k−j

(
k

j

)
ejt+xt

=
∞∑

n=0

tn

n!

∞∑
k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n

=
∞∑

n=0

tn

n!

n∑
k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n,
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because the k-th difference of jn is zero when k > n. Hence the coefficient of tn

n! is

n∑
k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n,

which is our desired formula for the n-th Bernoulli polynomial. �
It is easy to expand (x+ j)n by the binomial formula and find Bn(x) in terms

of Bn.
Indeed

(54) Bn(x) =
n∑

k=0

(
n

k

)
xn−kBk =

n∑
k=0

(
n

k

)
xkBn−k.

More generally it is well-known that the B’s satisfy the addition formula

(55) Bn(x+ y) =

n∑
k=0

(
n

k

)
xkBn−k(y).

Letting y = 0 in (55), we get relation (54).
The inverse of (54) is

(56) xn =
n∑

k=0

(
n

k

)
1

n− k + 1
Bk(x).

From (54)-(56) we have the general Bernoulli number inverse pair

(57) f(n) =

n∑
k=0

(
n

k

)
Bn−kg(k)

if and only if

(58) g(n) =
n∑

k=0

(
n

k

)
1

n− k + 1
f(k).

These may be restated in the equivalent form

(59) F (n) =
n∑

k=0

Bn−k

(n− k)!
G(k)

if and only if

(60) G(n) =
n∑

k=0

1

(n− k + 1)!
F (k).
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The basic orthogonality involved with these is that

(61)
n∑

k=j

(
n

k

)(
k

j

)
1

n− k + 1
Bk−j = δnj

which is easily seen to be equivalent to

(62)
n∑

k=j

(
n− j
k − j

)
1

n− k + 1
Bk−j = δnj .

Incidentally this may be viewed as a source of linear recurrences for the Bernoulli
numbers. For example with j = 0 we have

(63) Bn = −
n−1∑
k=0

(
n

k

)
1

n− k + 1
Bk.

This may be contrasted with the more widely known recurrence relation

(64)

n∑
k=0

(
n

k

)
Bk = (−1)nBn, for all integers n ≥ 0.

Euler polynomials suggest similar results. The generating function is

(65)
2ext

et + 1
=

∞∑
k=0

Ek(x)
tk

k!
.

The expansion analogous to (53) is

En(x) =
n∑

k=0

1

2k

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n.

Theorem 2.4.

(66) En(x) =
n∑

k=0

1

2k

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n.

Proof. The generating function proof runs as follows. We have

2ext

et + 1
= ext

1

1 + et−1
2

= ext
∞∑
k=0

(−1)k 1

2k
(et − 1)k.

The remainder of the steps are in exact parallel to the proof of (53). �
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The traditional Euler numbers are given by

(67) En = 2nEn(
1

2
).

Here we shall be concerned with the numbers defined by En(0) which more nearly
parallel Bn = Bn(0). In analogy to (56) we now have

(68) En(x) =
n∑

k=0

(
n

k

)
xkEn−k(0).

It is easy to show 2xn = En(x+ 1) + En(x) so that the inverse of (68) is

xn = En(x) +
1

2

n−1∑
k=0

(
n

k

)
En−k(x),

which may be rewritten as

(69) xn =
n∑

k=0

Dn
kEk(x),

where

(70) Dn
k =

1

2

(
n

k

)
for 0 ≤ k < n, and with Dn

n = 1.

Thus we have the Euler polynomial inverse pair:

(71) f(n) =

n∑
k=0

(
n

k

)
En−k(0)g(k)

if and only if

(72) g(n) =
n∑

k=0

Dn
k f(k),

where Dn
k is defined by (70).

We include the well-known Stirling number inverse pairs:

(73) f(n) =

n∑
k=0

S(n, k)g(k)

if and only if

(74) g(n) =
n∑

k=0

s(n, k)f(k)
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in Riordan’s notation [11,12] where S(n, k) and s(n, k) are defined by

(75)

(
x

n

)
n! =

n∑
k=0

s(n, k)xk

and

(76) xn =
n∑

k=0

S(n, k)

(
x

k

)
k!

where now the orthogonal relations are

(77)

i∑
k=j

S(i, k)s(k, j) = δij =

i∑
k=j

s(i, k)S(k, j).

A general theorem of Rainville [10, p. 137, Theorem 48] should be mentioned.
He defines a class of polynomials {fn(x)} by

(78) (1− t)−cψ

(
−4xt

(1− t)2

)
=

∞∑
n=0

fn(x)t
n,

where

(79) ψ(u) =
∞∑

n=0

γnu
n, γn ̸= 0.

Then he proves that

(80) fn(x) =
(c)n
n!

n∑
k=0

(−n)k(c+ n)kγk

( 12c)k(
1
2c+

1
2 )k

xk

and

(81) xn =
(c)2n
22nγn

n∑
k=0

(−1)k c+ 2k

(n− k)!(c)n+k+1
fk(x).

Several special polynomial systems which can be handled by (80)-(81) are dis-
cussed by Rainville. In particular [10, pp. 293-297] he discussed the simple Bessel
polynomials

(82) yn(x) = 2F0(−n, n+ 1;−−;−1

2
x)

and the generalized Bessel polynomials

(83) yn(x, a, b) = 2F0(−n, a− 1 + n;−−;−x
b
)



190 Salar Yaseen Alsardary and Henry Wadsworth Gould

introduced by Krall and Frink in 1949. There is now a rather large literature
concerning these polynomials. Rainville introduces a standard form for the Bessel
polynomials as follows:

ϕn(c, x) =
(c)n
n!

2F0(−n, n+ c;−−;x)

=
n∑

k=0

(−n)k(c+ n)k(c)n
k!n!

xk

=
n∑

k=0

(−1)k (c)n+k

k!(n− k)!
xk.

(84)

Then yn(x) occurs when c = 1 and x is replaced by (−x
2 ) and yn(x, a, b) is recovered

by introducing the redundant parameter b by replacing x by (−x
b ), putting c = a−1

and multiplying ϕn(a− 1,−x
b ) by n!/(a− 1)n.

For ϕn(c, x), Rainville uses (78) through (81) (his Theorem 48) to get the ex-
pansion

(85) xn = n!

n∑
k=0

(−1)k (c+ 2k)

(n− k)!(c)n+k+1
ϕk(c, x).

From our general remarks about inverse series pairs we see that (84)-(85) yields the
general Bessel polynomial inverse pair

(86) f(n) =
n∑

k=0

(−1)k (c)n+k

k!(n− k)!
g(k)

if and only if

(87) g(n) =
n∑

k=0

(−1)k n!(c+ 2k)

(n− k)!(c)n+k+1
f(k),

where we have retained the ascending factorial notation since c may be real or
complex. If c is restricted to be a positive integer we may rewrite (86)-(87) in the
form

(88) f(n) =
n∑

k=0

(−1)k (c+ n+ k − 1)!

k!(n− k)!(c− 1)!
g(k)

if and only if

(89) g(n) =
n∑

k=0

(−1)k n!(c− 1)!(c+ 2k)

(n− k)!(c+ n+ k)!
f(k).

Relations (78) through (81) suggest that we have a general Rainville inverse pair.
In fact we have the following.
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Theorem 2.5.

(90) f(n) =
(c)n
n!

n∑
k=0

(−n)k(c+ n)k

( 12c)k(
1
2c+

1
2 )k

g(k)

if and only if

(91) g(n) =
(c)2n
22n

n∑
k=0

(−1)k (c+ 2k)

(n− k)!(c)n+k+1
f(k).

This, of course, is nowhere made evident by Rainville. It is a nice generalization
which only sacrifices the machinery of ψ(u), fn(x) and γn. What we gain is that
g(n) is no longer assumed to be of the form γnx

n.

Proof. We may prove (90)-(91) as follows. We choose γn = 1 for all n ≥ 0. Then
(79) gives ψ(u) = 1

1−u and (80) gives fn(x) as a special polynomial. Thus we have
an inverse series pair of the form (1)-(2), but we saw that this is equivalent to the
form (7)-(8), which evidently proves our theorem that (90) and (91) imply each
other. �

One recovers Rainville’s theorem by specializing to let g(n) = γnx
n, introducing

fn(x) and deriving relation (78). An independent proof of our theorem may be based
on identities using the generalized hypergeometric function pFq.

Our first theorem was that if we have (1) or (2) then we may replace xn by g(n)
and fn(x) by f(n) and so (7) holds if and only if (8) holds. We now generalize this
using the terminology of Rainville [10, p. 147].

Let {fn(x)} and {gn(x)}, n = 0, 1, 2, · · · , be two simple sets of polynomials,
i.e. let fn(x) and gn(x) each be of degree precisely n in x so that each set contains
one polynomial of each degree. It is well-known then that there exist coefficients
(sometimes called connection coefficients) such that fn(x) may be expressed as a
linear combination of the g’s and conversely gn(x) may be expressed as a linear
combination of the f ’s.
More precisely, there exist coefficients An

k and Bn
k such that

(92) fn(x) =

n∑
k=0

An
kgk(x)

and

(93) gn(x) =
n∑

k=0

Bn
k fk(x).

In terms of vector analysis the set {gk(x)}, k = 0, 1, 2, · · · , n forms a set of linearly
independent vector polynomials (a basis) for a space of vector polynomials so that
any vector polynomial of degree n may be expressed uniquely as a linear combina-
tion of the basis vectors.
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Theorem 2.6. When (92)-(93) hold then the orthogonality relations (Kronecker
deltas) (3)-(4) hold and hence again the pair of inverse series relations (9)-(10) will
be true.

Proof. The proof is only a slight modification of our original result since all that
we have done is replace the basis {1, x, x2, x3, · · · , xn} by the equivalent bases
{g0(x), g1(x), · · · , gn(x)} or {f0(x), f1(x), · · · , fn(x)}. �

3. Applications

Rainville exhibits three pairs of formulas [10, pp. 195-196, 214-215] expressing Leg-
endre, Hermite and Laguerre polynomials as linear combinations of each other. By
our theorem above then the particular polynomials may be replaced in each inverse
series pair by sequences f(n) and g(n). The coefficients in these formulas are com-
plicated forms using generalized hypergeometric functions pFq[−−−] which we will
not use space to exhibit here.

We would be remiss in our work if we did not mention Gegenbauer, Chebyshev,
Ultraspherical, and Fibonacci polynomials. Expansions for the first three are given
by Rainville [10]. The Fibonacci polynomials have a large literature starting in the
first volume of the Fibonacci Quarterly, and we just cite Byrd [1] and Hoggatt and
Lind [9].
The Fibonacci polynomials are defined by f1(x) = 1, f2(x) = x, and recursively
fn+1(x) = xfn(x) + fn−1(x) for n ≥ 2. Explicitly

(94) fn+1(x) =

[n/2]∑
k=0

(
n− k
k

)
xn−2k, n ≥ 1.

Note that the recurrence relation gives f0(x) = 0. However, as noted in [9],
fn+1(x) = i−nUn(

ix
2 ), i

2 = −1, where Un(x) is the Chebyshev polynomial of the
second kind. The Gegenbauer, Chebyshev, Ultraspherical, and Fibonacci polyno-
mials are all special cases of the series inverse pairs we have discussed so that we do
not need to exhibit them explicitly. How they fit into the framework of our work
can be seen in [10].

Some of the inverses we have given here appear in variant forms in references
[2,4,7,11,12]. It is felt that our presentation displays the relations more directly as
they are connected with the several special polynomial functions.

Our inverse series relations (9)-(10) are of the type that one is true if and
only if the other is true. This is so because we started with non-singular square
matrices and, more particularly, triangular matrices. If we relax these requirements
and study general rectangular matrices we can form inverse series pairs where one
expansion does not imply the inverse expansion. A collection of these, as applied to
various special functions may be found in Gould [8]. A typical example given there
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is the following:

(95) f(n) =

[n/s]∑
k=0

(−1)sk
(
n

sk

)
g(k), where s = 1, 2, 3, · · · ,

implies

(96) g(n) =

sn∑
k=0

(−1)k
(
sn

k

)
f(k),

but not conversely when s ≥ 2. Following the line of thought in [8], one can develop
such one-sided inverse series pairs from the two-sided pairs we have presented here,
but we will not take space here to do this.
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