• Title/Summary/Keyword: Jumping

Search Result 415, Processing Time 0.022 seconds

Affection of Game Character's Jumping Motion Factors on Visual Effects (게임 캐릭터의 점프 동작 요인이 시각적 효과에 미치는 영향)

  • Go, Hye-Young;Yoon, Seon-Jeong
    • Journal of Korea Game Society
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 2011
  • In this paper, affection of jumping motion factors on visual effects are studied for game character's natural motion realization. First, 3 kinds of games that realize natural motions are selected and 4-types of characters jumping motions are captured from it. Then, the motions are measured using four fundamental principles of jumping as takeoff strength, landing impact, landing elasticity and flexibility, and measured in motion factors as time, distance, angle either. Finally, consistent characteristics of visual effects and motion factors on jumping motion are suggested. The study could be used to basic information for realization of character's natural jumping motion.

Design and Analysis of Electromagnetic System (자기 시스템의 해석과 설계)

  • Park, S.W.;Oh, J.H.;Yoon, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.520-522
    • /
    • 2005
  • This paper presents the design and analysis of the electromagnetic system such as jumping ring system. Also, we study the characteristics of dynamics for system with initial parameter. For the propose of system control,, first, we simulate the MATLAB tool solving coupled differential equations with electric parameter, inductance and mutual inductances. Therefore, we design a jumping ring system using design results, implement, and analyze the jumping ring system real situation. For the near time, we present a control process, and compare of real system and software technique.

  • PDF

Design and Analysis of An Electromagnetic System (전자기 시스템의 해석과 설계)

  • Park Seong-Wook;Kim Dong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.17-19
    • /
    • 2006
  • This paper presents the design of an electromagnetic system such as jumping ring system, and also considers the characteristics of dynamics for system with initial parameter. For the propose of system analysis, the MATLAB tool is to solve coupled differential equations with inductances and mutual inductance. To apply a real electromagnetic system, this paper implements the jumping ring system using design parameters, and analyzes the jumping ring system with proposal step.

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

Analysis of EMG Patterns during Ski Jumping using Training Simulator - Case Study for Ski Jumping Youth National Athletes - (훈련 시뮬레이터를 이용한 스키점프 도약 시 발생되는 EMG 패턴 분석 - 스키점프 유소년 국가대표 사례 연구 -)

  • Kim, Heungsoo;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • Objective: The purpose of this study was to verify the effectiveness among simulating ski jumping trainings by comparing with actual ski jump. Method: Three healthy youth national athletes were recruited for this study (age: 13.70 ± 0.9 yrs, height: 169.30 ± 0.9 cm, jumping caree: 5.3 ± 0.9 yrs). Participants were asked to performed ski jumping with 3 simulating and one actual situation. A 3-dimensional motion analysis with 5 channels of EMG was performed in this study. Muscle activations of Rectus Femoris [RF], Tibialis Anterior [TA], Thoracis [TH], Gluteus maximus [GM], and Gastronemius [GL] were achieved with sampling rate of 2,000 Hz during each jump. Results: In the case of S1 in the actual jumping motion, the deviation of the muscle activity peak did not appear each trial, and the jump timing was consistent. For S2, the timing of the muscles peak activation which can maintain the posture of the upper body and ankles appeared at the beginning. In the case of S3, the part maintaining the ankle posture at the beginning appeared, but it could be expected that it would progress in the vertical direction due to the activation of GL at the time of jumping. Conclusion: The muscle activation peak before the take-off point showed a different pattern for each athlete, and individual differences were large. In addition, it was attempted to confirm the actual jump with simulation jump, and it was found that not only the difference in patterns but also the fluctuations in the timing of each muscle activation peak were large.

Does Kinesio Taping Improve Vertical Jumping Performance?

  • Lim, Hyoung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.5
    • /
    • pp.269-273
    • /
    • 2016
  • Purpose: This study was conducted to examine the effect of kinesio taping (KT) on vertical jumping performance. Methods: Young women (n=24) performed vertical jumping under three conditions: kinesio taping, placebo taping, and no taping. All tapes were applied to both quadriceps and the gastrocnemius of the subjects. Vertical jump height and power were measured using an OptoGait, and the non-parametric Friedman test was used to identify differences between conditions. Results: No significant differences in maximum jump height or peak jump power between were observed between taping conditions. Conclusion: The results showed that KT did not facilitate muscle performance by generating higher jumping power or yielding a better jumping performance. As the functional performance is related to muscle strength, this finding may be explained by the fact that KT has no effects on muscle strength.

Development of Jumping Mechanism for Small Reconnaissance Robot (소형 정찰 로봇의 도약 메커니즘 개발)

  • Tae, Won-Seok;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

Intrinsic Motivation as a factor Affecting Exertion in Purposeful versus Nonpurposeful Activity (목적있는 활동과 목적없는 활동간의 내적 동기화에 관한 연구)

  • Ahn, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.1 no.1
    • /
    • pp.25-34
    • /
    • 1994
  • This study investigated the hypothesis that purposeful activity is an intrinsic motivator. Affecting exertion during the performance of purposeful and nonpurposeful activity was studied in 30 elementary school students. The subjects acted as their own controls in the performance of other exercise. The three experimental exercises were jumping rope, defined as a nonpurposeful activity, and jumping rope with reinforcement, defined as purposeful activity I, and jumping rope with double reinforcement (food), defined as purposeful activity II. Duration and cessation of exercise were entirely controlled by the subject. The number of jumps were measured immediately after cessation of exercise and duration of exercise in seconds by observer. The results were as follows : 1. There was a significant difference in the required time of performance between purposeful and nonpurposeful jumping (p< .05). 2. There was a significant difference in the number of jumps between nonpurposeful and nonpurposeful jumping after reinforcement. (p< .05). Implications for practice and further research are discussed.

  • PDF

Impact Force Characteristics of Running and Jumping by Child (어린이 달리기와 뛰어내릴 때의 충격력 특성)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Jeong, Young-Sun;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact force characteristics of real impact source in an apartment buildings. This study aims to investigate the impact force characteristics and impact force time of running and jumping by child. This study cud out investigation through the 155 children in school. The results of this study is that jumping impact force is greater than running impact force but impact force time is lower than that.

  • PDF

Design and Simulation of Small Bio-Inspired Jumping Robot (생체모방 소형 점핑로봇의 설계 및 시뮬레이션)

  • Ho, Thanhtam;Choi, Sung-Hac;Lee, Sang-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.