• Title/Summary/Keyword: Joule-Thomson

Search Result 49, Processing Time 0.025 seconds

Cooling perfermance of micro-impinging jet (마이크로 충돌제트에서의 냉각 특성)

  • Hong, Bong-Hwan;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1717-1723
    • /
    • 2003
  • Experimental study is conducted to investigate the cooling performance of impinging jet from microtube using Joule-Thomson effect to apply practical applications. And also the heat transfer characteristics of a impinging jet itself and the impinging jet with Joule-Thomson effect are tested to make a comparative study of the two different general ideas. For this propose, two kinds of copper microtubes which have 200 tim and 300 tim in inner diameter respectively were tested and $N_2$ was used as a working fluid. In case of impinging jet without Joule-Thomson effect, heat transfer coefficients distributions were similar to those of normal impinging jet. But in impinging jet with Joule-Thomson effect, the heat transfer coefficients decrease as jet-to-surface increases contrary to the case of the normal jet. As a result, much higher heat transfer coefficients are obtained with Joule-Thomson effect than those of the normal jet without J-T effect.

  • PDF

분자동역학 모의실험을 이용한 아르곤 기체의 Joule-Thomson 반전 곡선

  • Song, Yeon-Ho;Jin, Hui-Jeong;Won, Nan-Yeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.179-191
    • /
    • 2013
  • NPT ensemble을 이용하여 Joule-Thomson 반전 곡선 (Joule-Thomson inversion curve, JTIC)를 구하는 기존의 모의실험 방법들과는 달리, 본 연구에서는 NVT 분자동역학 모의실험을 이용하여 JTIC를 구하는 방법을 개발하고, 이 방법을 이용하여 아르곤 기체의 JTIC를 구할 수 있음을 보인다. 본 연구 결과를 실험 및 다른 이론들과 비교, 분석한 결과, 낮은 온도에서의 JTIC는 실험 및 이론 결과와 유사한 반면, 높은 온도에서는 일정 정도의 차이를 나타냄을 알 수 있다. 이 차이는 분자동역학 모의실험에 사용하는 적은 입자 수와 모의실험 시간, 그리고 curve fitting 방법 등에 기인하는 것으로 여겨진다. 또한 본 연구를 통하여 NVT 분자동역학 모의실험 방법만 가능한, EDISON 계산화학 프로그램 중 하나인 "Mixed LJ(12-6) particles MD"가 JTIC를 구하는데 유용하게 사용될 수 있고, 이를 통해 학부생들이 열역학의 기본 개념을 이해하는데 도움을 줄 것으로 기대한다.

  • PDF

Performance test of Joule-Thomson cryocooler with $H_2$gas (수소 Joule-Thomson냉동기의 성능실험)

  • 백종훈;강병하;홍성제;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-463
    • /
    • 1999
  • The Joule-Thomson cryocooler with $H_2$gas has been developed. Cool-down characteristics and the cooling performance of a JT cryocooler have been investigated in detail. The JT cryocooler consists of JT expansion valve, heat exchanger, expansion chamber, compressed $H_2$gas storage tank, $LN_2$precooler, heater and a cryostat. The precooling process using both $GN_2$and $LN_2$was peformed to cool down the inside components of cryocooler under the maximum inversion temperature of $H_2$. The $H_2$expansion experiments have been peformed for 2-5MPa of H$_2$pressure to evaluate steady state temperatures of the cryocooler. It is found that the steady state temperatures are decreased as the H$_2$pressures are increased. The effects of cooling temperatures on the performance have been evaluated for various $H_2$and $N_2$pressures. It is seen that the cooling loads are increased, as the cooling temperature and operating pressure are increased.

  • PDF

Design of Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator for Semiconductor Etching Process (반도체 식각공정을 위한 비가연성 혼합냉매 줄톰슨 냉동기 설계)

  • Lee, Cheonkyu;Kim, Jin Man;Lee, Jung-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2022
  • A cryogenic Mixed Refrigerant Joule-Thomson refrigeration cycle was designed to be applied to the semiconductor etching process with non-flammable constituents. 3-stage cascade refrigerator, single mixed refrigerant Joule-Thomson refrigerator, and 2-stage cascade type mixed refrigerant Joule-Thomson refrigerator are analyzed to figure out the coefficient of performance. Non-flammable mixture of argon(Ar), tetrafluoromethane(R14), trifluoromethane (R23) and octafluoropropane(R218) were utilized to analyze the refrigeration cycle efficiency. The designed refrigeration cycle was adapted to cool down the coolant of HFE7200(Ethoxy-nonafluorobutane, C4F9OC2H5) with certain constraints. Maximum coefficient of performance of the refrigeration system is obtained as 0.289 for the cooling temperature lower than -100℃. The detailed result of the coefficient of performance according to the mixture composition is discussed in this study.

Temperature Variations in the Natural Gas Pipeline with the Joule-Thomson Effect (Joule-Thomson 효과를 고려한 천연가스 배관내의 온도 변화)

  • Kim Youn J.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.14-19
    • /
    • 1997
  • A numerical method for determining the temperature vartiation in a natural gas transmission line is presented. By considering an element of the gas pipeline and assuming radially lumped heat transfer at steady-state conditions, the energy equation is developed. The integration of the developed nonlinear differential equation is done numerically using the fourth order Runge-Kutta scheme. The results of the present study have been compared with the results of Coulter equations, and show a fairly good agreement.

  • PDF

A Study on the Determination of Mixed Refrigerant for the Joule-Thomson Cryocooler (극저온 Joule-Thomson 냉동기용 혼합냉매 결정에 관한 연구)

  • 이경수;장기태;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.901-907
    • /
    • 2000
  • The conceptual determination of mixed-refrigerant (MR) for a closed Joule-Thomson cryocooler is described in this paper. The thermodynamic cycle design was mainly considered to develop a cryocooler by using a compressor of domestic air-conditioning unit. The target cooling performance of the designed cryocooler is 10 W around 70 K with less than 5 kJ/kg enthalpy rise. The systematic approach of choosing a proper refrigerant among 20 different kinds of mixture for such cryogenic temperature was introduced in detail. The main components of the cryocooler are compressor, evaporator, oil separator, after-cooler, counterflow heat exchanger, and J-T expansion device. Due to the limitation of the compressor operation range, the temperature after the compression was limited below $117^{\circ}C$ (390 K) and the temperature before compression was restricted above $5^{\circ}C$ (278 K). 20 atm of discharging pressure (high pressure) and less than 3 atm suction pressure (low pressure) were the design conditions. The inlet temperature of a counterflow heat exchanger in the high Pressure side was about 300 K. The proper composition of the mixed refrigerant for the designed J-T cryocooler is 15% mol of$ N_2, 30% mol of $CH_4,\; 30% mol\; of C^2H^ 6,\; 10%\; mol\; of\; C_3H_8\; and \;15%\; mol\; of\; i-C_4H_10$.

  • PDF

Design of the miniature Joule-Thomson refrigerator as a cryoprobe (저온 수술 프로브용 소형 Joule-Thomson 냉동기의 설계)

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon;In, Se-Hwan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.86-90
    • /
    • 2007
  • The cryoprobe used in cryosurgery should be fabricated in milimeter-order size for its practical usage. In general a miniature J-T(Joule-Thomson) refrigerator is applied to a cryoprobe. In case of the miniature J-T refrigerator, the mass flow rate of working fluid is small due to considerable friction in a minute flow path. For that reason, the miniature J-T refrigerator has a limited cooling power. To obtain the large cooling power from the J-T refrigerator, the refrigerator should have large mass flow rate and effective J-T temperature drop. These quantities are closely related to the geometry of the heat exchanger and the expansion nozzle in a cryoprobe, and are contradictory. The large mass flow rate leads to the small J-T temperature drop and vice versa in the miniature J-T refrigerator. Therefore, the optimal design of a cryoprobe to achieve maximum cooling power at fixed tube size and fixed operating temperature is required. This paper presents the design procedure of such case.

Evaluation of Operating Conditions for the Natural Gas Transmission Pipeline in the Arctic Environment (극한지 장거리 천연가스 배관의 운전조건 평가)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.