• Title/Summary/Keyword: Joseon Supergroup

Search Result 31, Processing Time 0.021 seconds

Gravity Exploration Inferring the Source Granite of the NMC Moland Mine, Jecheon, Chungbuk (충북 제천 NMC 몰랜드 광산의 관계 화성암에 대한 중력탐사)

  • Shin, Young Hong;Yoo, Bong Chul;Lim, Mutaek;Park, Yeong-Sue;Ko, In Se
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • NMC Moland mine, which is classified as a contact replacement or skarn deposit, has been interpreted to have been formed by Daebo igneous activity which intruded into the Joseon Supergroup, because it is quite closely located to Jecheon granite. However, an alternative interpretation was recently suggested that the mine could be related with the hydrothermal fluid originated from Cretaceous granitic rocks, bringing about skarnization and Mo mineralization. Here we present an interpretation on the source granite of the mine based on the gravity exploration: the gravity anomaly, unlike the surface geology, shows that the Muamsa granite could be the related granite of the mine, because its hidden subsurface structure is expected to be more widely extended to surrounding area of the mine and deeper than the Jecheon granite.

Formation Mechanism of Recumbent Fold observed in the Bangrim-ri, Pyeongchang-gun, Korea (평창군 방림리에 발달하는 횡와습곡의 형성 기작)

  • Cheon, Youngbeom;Kang, Hee-Cheol;Ha, Sangmin;Lee, Sun-Kap;Son, Moon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.217-225
    • /
    • 2019
  • This study describes a large recumbent fold, which occurs at the north entrance slope of the Batjae tunnel, Pyeongchang-gun, Gangwon-do, and interprets its formation mechanism. The several-hundred-meter scale fold, developed in the Jeongseon Limestone of the Paleozoic Joseon Supergroup, has a nearly horizontal axial plane and its head is facing north. Stretching lineations ($L_1$) observed on the composite foliations of bedding and axial plane cleavage plunge southward at about $10^{\circ}$. Small A-type or eye-shaped sheath folds together with S-shaped asymmetrical folds are often observed in the fold limbs and their axes are nearly parallel to the lineations ($L_1$) within center and rear parts of the fold. It is thus interpreted that the recumbent fold is a large sheath fold produced by the top-to-the-north ductile shearing due to the Songrim orogeny during the late Paleozoic to Triassic.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF

Nature of contact between the Ogcheon belt and Yeongnam massif and the Pb-Pb age of granitic gneiss in Cheondong-ri, Danyang (단양 천동리 지역 옥천대/영남육괴의접촌관계와 소위 화강암질 편마암의 Pb-Pb 연대)

  • 권성택;이진한;박계헌;전은영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.144-152
    • /
    • 1995
  • The Jangsan Quartzite of the Joseon Supergroup and the foliated granite (so-called granitlc gneiss of presumed Precambrian age) of the Yeongnam massif are in direct contact at Cheondong-ri area, 6 km @SE of Danyang. sllthough it has been thought traditionally that the Jangsan Quartzite overlies unconformably the f&ted granite, it is difficult to interpret the contact as an unconformity smce the basal conglomerate in- the lower part of the Jangsan Quartzite does not have any clast of the foliated granite, Rather, recent structural studies of this area indlcate that the contact is a ductile shear zone. However, the sense and age of the shear movement are still problematic. Our mesoscopic and microscopic studies of &tre Cheondong-11 semi-brittle shear zone involving foliated cataclasite and phyllonite, which is a pa& of the Ogdong fault, indlcate a top-to-the northeast shearing, i.e., dextral strike slip. We also performed Pb-Pb dating for the age-unknown foliated granite, since the age of deformed granite ccarr emtrain the maximum age of deformation. The whole rock and feldspar Pb isotape data for the foliated granite and a micaceous xenolith define an isoc chron age of $2.16{\pm}0.15$ Ga ($2{\sigma}$;MSWD=4.4) which is interpreted as the emplacement age of the granite. This early Proterozoic age agrees with those of Precambrian igneous activity In the Yeongnam massif reported previously. The obtaiPrfid gge confirms the traditional idea about the age of the foliated granite and indicates that other methd(s) should be employed to constrain the age of the shear movement.

  • PDF

Case Study on the Mitigation of Dangerous Slope Considering the Value of Geoheritage (지질유산 가치를 고려한 위험비탈면 보존 방안 사례 연구)

  • Jeong, Jun-Ho;Kim, Seung-Hyun;Park, Byung-suk;Woo, Yong-Hoon;Kang, Yun-seok;Koo, Ho-bon;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.71-84
    • /
    • 2020
  • Various geological structures are found on the slope of Bangnim district in Pyeongchang, Gangwon-do, based on the Paleozoic Joseon Supergroup Limestone. The recumbent fold observed on the slope is a very rare geological structure that has not been found in Korea, and has important academic value in exploring the formation process of the Paleozoic geological structures in the Gangwon region. In this study, discussed the geological value of the geological structure observed on the slope of the road, and studied the management method of rockfall problem slopes. The state of development of recumbent folds has conservation value in geological scarcity and specificity. Preservation management measures should be prepared through the protection of slopes and measures to reduce of rockfall risks as geoheritage with an important value in geology science and education. Furthermore, it is expected to be preserved and utilized as a geopark.

Paleoclimatic Implication of Cave Speleothems in the Submerged Parts of the Seongnyu Cave, Republic of Korea (성류굴 내 호수구간의 수중통로에서 발견되는 동굴생성물의 고기후적 의미)

  • Kim, Ryeon;Woo, Kyung-Sik;Kim, Bong-Hyeon;Park, Jae-Suk;Park, Hun-Young;Jeong, Hee-Jeong;Lee, Jong-Hee
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.1
    • /
    • pp.11-24
    • /
    • 2010
  • Seongnyu Cave have developed along the NE-SW direction in carbonate rocks of the Joseon Supergroup. The cave mostly shows horizontal passages and contains three lakes. The main passage is about 330 m long with 540 m-long branches, thus the total length of the cave is about 870 m. Through cave diving, about 85 m-long new passages were discovered. Numerous speleothems such as soda straws, stalactites, stalagmites, columns, flowstones, rimstones, cave shields, cave corals, curtains (and bacon sheets), cave pearls, cave flowers, helictites and calcite rafts can be found in the cave. Especially, some speleothems which were believed to have grown in the past were discovered in the submerged passage, and a few stalactites, stalagmites, flowstones and columns were eroded (or corroded) by the cave stream that flowed on the floor. Because these speleothems only grow in subaerial environments within limestone caves, it appears that they grew when there was no lake in the cave and became submerged as the lake level rose in the cave. The presence of these speleothems in the lakes indicate that they only grew during glacial periods when sea-level was lower. Therefore, detailed investigation of these speleothems will provide invaluable information on paleoclimatic evolution around the Korean peninsula in the future.

  • PDF

Geological Heritage Value and Appropriate Conservation/Utilization of the Seokgaejae Early Paleozoic Sedimentary Stratal Section (석개재 전기 고생대 퇴적층 단면의 지질유산적 가치와 보전 및 활용방안)

  • Lee, Seung-Bae
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.126-145
    • /
    • 2017
  • The Seokgaejae section is located along a timber access road and a driveway across Bonghwa County, North Gyeongsang Province, and Samcheog city, Gangwon Province. Its stratigraphic column shows all of the ten strata of the lower Paleozoic Taebaek Group, Joseon Supergroup. The Seokgaejae section is proved to be scientifically important. Thirty-eight domestic/international journal papers have been published on this early Paleozoic stratigraphic site, and many distinguished researchers over the world have visited the site. However, the section has never been considered to be designated as a national natural monument and was not included in the adjacent Gangwon Paleozoic National Geopark due to management or administrative issues. Although the Seokgaejae section sufficiently satisfies many of the national natural monument criteria, designation for the natural monument may not be justified because of the facts that the outcrop was artificially exposed by road construction; the chance of destruction of the outcrop is relatively few; demage on the outcrop to some extent does not impair the intrinsic value of the section; and the geomorphological/landscape value of the section is low. The application of the recently modified geological heritage assessment model to the Seokgaejae section shows very high scores on the scientific/educational, intrinsic, and functional values. Based on the improved geological heritage grade standard, the Seokgaejae section conforms to the national-level protection criteria. It is strongly recommended to manage the Seokgaejae section as a principal geosite by including it in the Gangwon Paleozoic National Geopark. This case study on the Seokgaejae section also suggests that the process of application and endorsement of a national geopark need further improvement. As well as the improvement of the system or policy related to geological heritages, further efforts of the experts in various fields of geoscience are required in order for other geological heritages not to be neglected from now on.

Principle and Application of 'Image-mapping' in-situ U-Pb Carbonate Age-dating ('Image-mapping' in-situ U-Pb 탄산염광물 연대측정법의 원리 및 적용)

  • Ha Kim;Seongsik Hong;Chaewon Park;Jihye Oh;Jonguk Kim;Yungoo Song
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.115-123
    • /
    • 2023
  • We introduce a new 'image-mapping' in-situ U-Pb dating method using LA-ICP-MS, proposed by Drost et al. (2018), and show the characteristics and usability of this method through several examples of absolute age results determined by first applying it to samples from the Joseon Supergroup of the Early Paleozoic Era in Korea. Unlike the previous in-situ spot analysis, this in-situ U-Pb dating method for carbonate minerals can determine the absolute age with high reliability by applying the 'image-mapping' method of micro-sized domains based on micro-textural observation, as well as determine the absolute age of multiple geological 'events' that occurred after deposition. This was confirmed in the case of determining the syn-depositional age and the multiple post-depositional ages from carbonate minerals of the Makgol and the Daegi Formations. Therefore, if the 'image-mapping' in-situ U-Pb dating method is applied to determine the absolute age of various types of carbonate minerals that exist in various geological environments throughout the geologic era, it will be possible to secure new geological age information.