DOI QR코드

DOI QR Code

Gravity Exploration Inferring the Source Granite of the NMC Moland Mine, Jecheon, Chungbuk

충북 제천 NMC 몰랜드 광산의 관계 화성암에 대한 중력탐사

  • Shin, Young Hong (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yoo, Bong Chul (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lim, Mutaek (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Yeong-Sue (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ko, In Se (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 신영홍 (한국지질자원연구원 광물자원연구본부) ;
  • 유봉철 (한국지질자원연구원 광물자원연구본부) ;
  • 임무택 (한국지질자원연구원 광물자원연구본부) ;
  • 박영수 (한국지질자원연구원 광물자원연구본부) ;
  • 고인세 (한국지질자원연구원 광물자원연구본부)
  • Received : 2014.02.20
  • Accepted : 2014.04.23
  • Published : 2014.04.28

Abstract

NMC Moland mine, which is classified as a contact replacement or skarn deposit, has been interpreted to have been formed by Daebo igneous activity which intruded into the Joseon Supergroup, because it is quite closely located to Jecheon granite. However, an alternative interpretation was recently suggested that the mine could be related with the hydrothermal fluid originated from Cretaceous granitic rocks, bringing about skarnization and Mo mineralization. Here we present an interpretation on the source granite of the mine based on the gravity exploration: the gravity anomaly, unlike the surface geology, shows that the Muamsa granite could be the related granite of the mine, because its hidden subsurface structure is expected to be more widely extended to surrounding area of the mine and deeper than the Jecheon granite.

NMC 몰랜드 광산은 고생대 조선누층군을 관입한 화성암류에 의해 형성된 접촉교대 또는 스카른 광상으로 공간적으로 제천화강암과 인접해 있어 이 화강암을 관계 화성암으로 간주하여 대보 화성 활동과 관련하여 형성된 광상으로 해석하였으나, 최근에는 백악기 천부 반화강암질 암체에서 기원된 광화유체로부터 스카른화작용과 더불어 Mo 광화작용이 진행된 것이라는 해석이 제시되었다. 본 연구에서는 광산 일원에 대한 중력탐사를 통해 지하구조를 해석함으로써, 지표 지질에서 제천화강암이 광산에 훨씬 인접한 것과는 달리 지하에서는 남쪽의 백악기 무암사화강암이 광산 하부와 주변으로까지 뻗어있을 것으로 여겨지며, 결과적으로 광상 형성의 관계 화성암으로 작용하였을 것임을 제시한다.

Keywords

References

  1. Becker, J.J., Sandwell, D.T., Smith, W.H.F. Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G. and Weatherall, P. (2009), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_Plus, Mar. Geod., v.32, n.4, 355-371. https://doi.org/10.1080/01490410903297766
  2. Cho, D.L. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of crustal thickness. Jour. Geol. Soc. Korea, v.30, p.41-61.
  3. Choi, K.S., Kim, J.H. and Shin, Y.H. (2002) On the isostasy and effective elastic thickness of the lithosphere in southern part of the Korean Peninsula. Jour. Korean Geophys. Soc., v.5, n.4, p.293-303.
  4. Choi, K.S., Park, P.H. and Shin, Y.H. (1998) Gravity Surveying with GPS. Jour. Korean Earth Sci. Soc., v.19, n.2, p.120-126.
  5. Choi, K.S., Yang, C.S., Shin, Y.H. and Ok, S.S., (2003) On the improvement of precision in gravity surveying and correction, and a dense Bouguer anomaly in and around the Korean Peninsula. The Jour. Korean Earth Sci. Soc., v.24, n.3, p.205-215.
  6. Choi, S.G., Park, J.W., Seo, J., Kim, C.S., Shin, J.K., Kim, N.H., Yoo, I.K., Lee, J.Y. and Ahn, Y.H. (2007) Hidden porphyry-related ore potential of the Geumseong Mo deposit and its genetic environment. Econ. Environ. Geol., v.40, p.1-14.
  7. Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, R. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf (2007) The shuttle radar topography mission, Rev. Geophys, 45, doi:10.1029/2005RG000183.
  8. Heiskanen, W.A. and Vening Meinesz, F.A. (1958) The Earth and its gravity field, McGraw-Hill Book Co.Inc.
  9. Ishihara, S., Jin, M. and Terashima, S. (2005) Mo-related adakitic granitoids from non-island-arc setting: Jecheon pluton of South Korea. Resource Geol., v.55, p.385-396. https://doi.org/10.1111/j.1751-3928.2005.tb00259.x
  10. Jwa, Y.J (2008) A Preliminary Study on Granite Suite and Supersuite for the Jurassic Granite in South Korea. Jour. Petrol. Soc. Korea, v.17, p.222-230.
  11. Jin, M., Kim, S.J., Shin, S.C., Choo, S.H. and Chi, S.J. (1992) Thermal history of the Jecheon granite piuton in the Ogcheon fold belt, South Korea. Jour. Petrol. Soc. Korea, v.1, p.49-57.
  12. KORES (2006) Detailed geological survey report (molybdenite: Jaecheon area). Korea Resource Corporation,100p.
  13. Park, N.Y. (1982) Molybdenum mineralization, exploration and exploitation of the ore deposits at the Keumseong mine, Republic of Korea. Unpub. Ph.D. thesis. Japan, Waseda Univ., 188p.
  14. Shibata, K., Park, N.Y., Uchiumi, S. and Ishihara, S. (1983) K-Ar ages of the Jecheon granitic complex and related molybdenite deposits, South Korea. Mining Geol., v.33, p.193-197.
  15. Shin, D.B. and Lee, I.S. (2006) Fluid inclusions and their stable isotope geochemistry of the carbonate-hosted talc deposits near the Cretaceous Muamsa granite, South Korea. Geochem. Jour., v.40, p.69-85. https://doi.org/10.2343/geochemj.40.69
  16. Shin, Y.H. (2006a) Gravity anomaly and the distribution of granitoids in the southern part of the Korean Peninsula. Jour. Geol. Soc. Korea, v.42, n.3, p.383-396.
  17. Shin, Y.H. (2006b) Implications of gravity anomalies in the tectonic provinces of the southern part of the Korean Peninsula. Jour. Geol. Soc. Korea, v.42, n.3, p.397-411.
  18. Shin, Y.H., Choi, K.S., Kim, K.O. and Na, S.H. (2011) Development and application of a FORTRAN program for gravity corrections, a paper presented at 2013 Korea Society of Earth and Exploration Geophysicist Conference, p.97-98.
  19. So, C.S. and Yun, S.T. (1992) Geochemistry and genesis of hydrothermal Au-Ag-Pb-Zn deposits in the Hwanggangri mineralized district, Republic of Korea. Econ. Geol., v.87, p.2056-2084. https://doi.org/10.2113/gsecongeo.87.8.2056
  20. So, C.S. and Yun, S.T. (1994) Origin and evolution of WMo- producing fluids in a granitic hydrothermal system: geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri district, Republic of Korea. Econ. Geol., v.89, p.246-267. https://doi.org/10.2113/gsecongeo.89.2.246
  21. Tamura, Y. (1982) A computer program for calculating the tide generating force. The publications of the international latitude observatory of Mizusawa, v.16, p.1-19.
  22. Yoo, B.C., Brown, P.E. and White, N.C. (2011) Hydrothermal fluid characteristics and genesis of Cu quartz veins in the Hwanggangri metallogenic district, Republic of Korea: Mineralogy, fluid inclusion and stable isotope studies. Jour. Geochem. Explo., v.110, p.245-259. https://doi.org/10.1016/j.gexplo.2011.05.012