DOI QR코드

DOI QR Code

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method

GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석

  • Lee, Seok Hwan (Department of Geoinformation Engineering, Sejong University) ;
  • Park, Hyuck Jin (Department of Geoinformation Engineering, Sejong University)
  • 이석환 (세종대학교 지구정보공학과) ;
  • 박혁진 (세종대학교 지구정보공학과)
  • Received : 2014.03.11
  • Accepted : 2014.04.23
  • Published : 2014.04.28

Abstract

The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

암반으로 구성된 사면의 안정성은 암반 내에 포함되어 있는 불연속면의 방향과 강도 특성에 의해 좌우된다. 특히 암반사면의 안정성에 영향을 미치는 중요한 요인은 암반 내 불연속면의 방향과 사면 방향의 상대적 위치로 운동학적 분석에서는 이러한 사면의 방향성과 불연속면의 방향의 상대적 위치를 고려하여 사면 붕괴의 발생 여부를 판단한다. 기존의 운동학적 분석은 사면의 대표적인 방향을 먼저 결정하고 사면내에 분포하는 대표적인 불연속면의 방향성과의 비교를 통해 사면에서의 파괴 발생 여부를 평가하는 방식으로 수행되어왔다. 그러나 사면의 대표적인 방향성만을 이용하여 운동학적 분석을 수행하는 경우 사면 내에서 발생하는 사면 방향의 변화를 분석에 고려하지 못하는 문제점을 가지고 있다. 또한 불연속면 방향의 경우 불확실성에 의해 동일한 불연속면군에 속한 불연속면이라도 분산이 커지는 문제점을 가지고 있다. 따라서 본 연구에서는 이를 보완하기 위하여 수치지형도를 이용하여 사면을 여러 개의 cell로 구분하고 각 cell에서 사면의 경사방향과 경사를 획득하였다. 그리고 각 cell의 사면 방향을 불연속면의 방향성과 비교하여 각 cell에서의 평면파괴에 대한 운동학적 분석을 수행하였다. 또한 불연속면 방향성에 개입된 불확실성을 고려하기 위하여 불연속면의 경사와 경사방향을 확률변수로 선정하고 몬테카를로 시뮬레이션을 활용하여 확률론적 해석을 수행하였다. 본 연구에서는 제안된 해석기법의 적정성을 파악하기 위하여 급경사지의 사면이 분포하고 있는 강원도 춘천시 관내 배후령길을 대상으로 분석을 수행하였다.

Keywords

References

  1. Dongbu Engineering (2003) Technical Report on Geotechnical Site Investigation for Road Improvement between Shinbuk and Buksan, 842p.
  2. Fell, R. (2000) Landslide risk management concepts and guidelines-Australian Geomechanics Society Sub- Committee on Landslide Risk Management In; Landslides, International Union of Geological Sciences, p.51-93.
  3. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E. and Savage, W.Z. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for landuse planning. Engineering Geology, v.102, n.3-4, p.85-98. https://doi.org/10.1016/j.enggeo.2008.03.022
  4. Grelle, G., Revellino, P., Donnarumma, A. and Guadagno, F.M. (2011) Bedding control on landslides: a methodological approach for computer-aided mapping analysis. Natural Hazards and Earth System Sciences, v.11, p.1395-1409. https://doi.org/10.5194/nhess-11-1395-2011
  5. Gunther, A., Carstensen, A. and Pohl, W. (2004) Automated sliding susceptibility mapping of rock slopes. Natural Hazards and Earth System Sciences, v.4, p.95-102. https://doi.org/10.5194/nhess-4-95-2004
  6. Gunther, A. and Thiel, C. (2009) Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rugen Island, Germany). Natural Hazards and Earth System Sciences, v.9, p.687-698. https://doi.org/10.5194/nhess-9-687-2009
  7. Hoek, E. and Bray, J.W. (1981) Rock Slope Engineering, The Insititution of Mining and Metallurgy, Third Edition,360p.
  8. Jeong, N.S., You, K.H. and Park, H.J. (2011) Stability analysis of landslides using a probabilistic analysis method in the Boeun area. The Journal of Engineering Geology, v.21, p.247-257. https://doi.org/10.9720/kseg.2011.21.3.247
  9. Lee, J.K. (2007) Geological Structures and Characteristics of the Baehuryeong fault zone of the Chuncheon- Hwacheon area, Kangwon-do, Korea. Gangwon Univ., Master Thesis, 142p.
  10. Liu, C.N. and Wu, C.C. (2008) Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology, v.55, n.4, p.907-915. https://doi.org/10.1007/s00254-007-1042-x
  11. Ministry of Constructuion and Transportation(MOCT). (2005) Development and Operation of Road Cut Slope Management System, 308p.
  12. Norrish, N.I. and Wyllie, D.C. (1996) Rock slope stability analysis. In; Turner, A.K., and Schuster, R.L., Landslides: Investigation and Mitigation, National Academy Press, p.397.
  13. Park, H.J. (2007) Probability analysis. In; Korean Society for Rock Mechanics (ed.), Rock Slope Engineering, Construction Information Press, p.261-285.
  14. Park, H.J., Lee, J.H. and Woo, I. (2013) Assessment of railfall-induced shallow landsilde susceptibility using a GIS-based probabilistic approach. Engineering Geology, 161, p.1-15. https://doi.org/10.1016/j.enggeo.2013.04.011
  15. Priest, S.D. and Brown, E.T. (1983) Probabilistic stability analysis of variable rock slopes, Transactions of the Institution of Mining and Metallurgy, London, 92, A1-A2.
  16. Shin, S.M. (2012) A Study for the Behavior of Rock Slope the Crest of which has been excavated. Pukyong Univ., Master Thesis, 119p.
  17. Silva, F., Lambe, T.W. and Marr, W.A. (2008) Probability and risk of slope failure, Journal of Geotechnical and Geoenvironmental Engineering, v.134, n.12, p.1691-1699. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1691)
  18. Sun, J.Y. (2012) Stabilization of Different Types of Slope Failure. Chosun Univ., Master Thesis, 96p.
  19. Willie, D.C. and Mah, C.W. (2004) Rock Slope Engineering: Civil and Mining, 4th ed., Spon Press, 431p.
  20. Yilmaz, I,. Marschalko, M,. Yildirim, M,. Dereli, E. and Bednarik M. (2012) GIS-based kinematic slope instability and slope mass rating(SMR) maps: application to a railway route in Sivas (Turkey). Bull Eng Geol Environ, v.71, p.351-357. https://doi.org/10.1007/s10064-011-0384-5
  21. Yu, S.T. (2012) Stability Evaluation and Reinforcement Design Method of the Rock Slope. Pukyong Univ., Master Thesis, 72p.