• Title/Summary/Keyword: Jordan-von Neumann type functional equation

Search Result 4, Processing Time 0.017 seconds

ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS

  • An, Jong-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • In this paper, it is shown that if f satisfies the following functional inequality (0.1) $${\parallel}\sum\limits_{i,j=1}^3\;f{(xi,yj)}{\parallel}{\leq}{\parallel}f(x_1+x_2+x_3,\;y_1+y_2+y_3){\parallel}$$ then f is a bi-additive mapping. We moreover prove that if f satisfies the following functional inequality (0.2) $${\parallel}2\sum\limits_{j=1}^3\;f{(x_j,\;z)}+2\sum\limits_{j=1}^3\;f{(x_j,\;w)-f(\sum\limits_{j=1}^3\;xj,\;z-w)}{\parallel}{\leq}f(\sum\limits_{j=1}^3\;xj,\;z+w){\parallel}$$ then f is an additive-quadratic mapping.

JORDAN-VON NEUMANN TYPE FUNCTIONAL INEQUALITIES

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.269-277
    • /
    • 2007
  • It is shown that $f:\mathbb{R}{\rightarrow}\mathbb{R}$ satisfies the following functional inequalities (0.1) ${\mid}f(x)+f(y){\mid}{\leq}{\mid}f(x+y){\mid}$, (0.2) ${\mid}f(x)+f(y){\mid}{\leq}{\mid}2f(\frac{x+y}{2}){\mid}$, (0.3) ${\mid}f(x)+f(y)-2f(\frac{x-y}{2}){\mid}{\leq}{\mid}2f(\frac{x+y}{2}){\mid}$, respectively, then the function $f:\mathbb{R}{\rightarrow}\mathbb{R}$ satisfies the Cauchy functional equation, the Jensen functional equation and the Jensen quadratic functional equation, respectively.

  • PDF

APPROXIMATION OF CAUCHY ADDITIVE MAPPINGS

  • Roh, Jai-Ok;Shin, Hui-Joung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.851-860
    • /
    • 2007
  • In this paper, we prove that a function satisfying the following inequality $${\parallel}f(x)+2f(y)+2f(z){\parallel}{\leq}{\parallel}2f(\frac{x}{2}+y+z){\parallel}+{\epsilon}({\parallel}x{\parallel}^r{\cdot}{\parallel}y{\parallel}^r{\cdot}{\parallel}z{\parallel}^r)$$ for all x, y, z ${\in}$ X and for $\epsilon{\geq}0$, is Cauchy additive. Moreover, we will investigate for the stability in Banach spaces.