• 제목/요약/키워드: Jordan-von Neumann type bi-additive functional equation

검색결과 1건 처리시간 0.014초

ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS

  • An, Jong-Su
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.371-376
    • /
    • 2008
  • In this paper, it is shown that if f satisfies the following functional inequality (0.1) $${\parallel}\sum\limits_{i,j=1}^3\;f{(xi,yj)}{\parallel}{\leq}{\parallel}f(x_1+x_2+x_3,\;y_1+y_2+y_3){\parallel}$$ then f is a bi-additive mapping. We moreover prove that if f satisfies the following functional inequality (0.2) $${\parallel}2\sum\limits_{j=1}^3\;f{(x_j,\;z)}+2\sum\limits_{j=1}^3\;f{(x_j,\;w)-f(\sum\limits_{j=1}^3\;xj,\;z-w)}{\parallel}{\leq}f(\sum\limits_{j=1}^3\;xj,\;z+w){\parallel}$$ then f is an additive-quadratic mapping.