• Title/Summary/Keyword: Jordan algebra

Search Result 77, Processing Time 0.024 seconds

CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON BANACH ALGEBRAS WITH LOCAL ACTIONS

  • Jiankui Li;Shan Li;Kaijia Luo
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.469-485
    • /
    • 2023
  • Let 𝓐 be a unital Banach *-algebra and 𝓜 be a unital *-𝓐-bimodule. If W is a left separating point of 𝓜, we show that every *-derivable mapping at W is a Jordan derivation, and every *-left derivable mapping at W is a Jordan left derivation under the condition W𝓐 = 𝓐W. Moreover we give a complete description of linear mappings 𝛿 and 𝜏 from 𝓐 into 𝓜 satisfying 𝛿(A)B* + A𝜏(B)* = 0 for any A, B ∈ 𝓐 with AB* = 0 or 𝛿(A)◦B* + A◦𝜏(B)* = 0 for any A, B ∈ 𝓐 with A◦B* = 0, where A◦B = AB + BA is the Jordan product.

𝜎-JORDAN AMENABILITY OF BANACH ALGEBRAS

  • Jun Li;Lin Chen;Mohammad Javad Mehdipour
    • Honam Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we introduce the notion of 𝜎-Jordan amenability of Banach algebras and some hereditary are investigated. Similar to Johnson's classic result, we give the notions of 𝜎-Jordan approximate and 𝜎-Jordan virtual diagonals, and find some relations between the existence of them and 𝜎-Jordan amenability.

THE RESULTS CONCERNING JORDAN DERIVATIONS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2016
  • Let R be a 3!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0 if and only if D(x)[D(x), x] = 0 for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A). If D is a continuous linear Jordan derivation on A, then we see that $[D(x),x]D(x){\in}rad(A)$ if and only if $[D(x),x]D(x){\in}rad(A)$ for all $x{\in}A$.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-125
    • /
    • 2018
  • Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

ON UDL DECOMPOSITIONS IN SEMIGROUPS

  • Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.633-651
    • /
    • 1997
  • For a non-degenerate symmetric bilinear form $\sigma$ on a finite dimensional vector space E, the Jordan algebra of $\sigma$-symmetric operators has a symmetric cone $\Omega_\sigma$ of positive definite operators with respect to $\sigma$. The cone $C_\sigma$ of elements (x,y) \in E \times E with \sigma(x,y) \geq 0$ gives the compression semigroup. In this work, we show that in the sutomorphism group of the tube domain over $\Omega_\sigma$, this semigroup has a UDL and Ol'shanskii decompositions and is exactly the compression semigroup of $\Omega_sigma$.

  • PDF

JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do;Byun, Sang-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.995-1004
    • /
    • 2000
  • In this paper we shall give a slight generalization of J. Vukman's Theorem. And show from the result that the image of a continuous linear Jordan derivation on a noncommutative Banach algebra A is contained in the radical under the condition [D(x),x]E(x) ${\in}$ rad(A) for all $x{\in}A$ . And we show some properties of the derivations on noncommutative Banach algebras.

JORDAN DERIVATIONS MAPPING INTO THE JACOBSON RADICAL

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • In this paper we show that the following results remain valid for arbitrary Jordan derivations as well: Let d be a derivation of a complex Banach algebra A. If $d^2(x){\in}rad(A)$ for all $x{\in}A$, then we have $d(A){\subseteq}rad(A)$ ([5, p. 243]), and in a case when A is unital, $d(A){\subseteq}rad(A)$ if and only if sup{$r(z^{-1}d(z)){\mid}z{\in}A$ invertible} < ${\infty}$([3]), where rad(A) stands for the Jacobson radical of A, and r(${\cdot}$) for the spectral radius.

  • PDF