• Title/Summary/Keyword: Jordan algebra

Search Result 77, Processing Time 0.022 seconds

A RESULT OF LINEAR JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1998
  • The purpose of this paper is to prove the following result: Let A be a noncom mutative Banach algebra. Suppose that $D:A{\rightarrow}A$ is a continuous linear Jordan derivation such that $D^2(x)D(x)^2{\in}rad(A)$ for all $x{\in}A$. Then D maps A into its radical.

  • PDF

LINEAR JORDAN DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.539-546
    • /
    • 1998
  • Let A be a noncommutative Banach algebra. Suppose that a continuos linear Jordan derivation D:A$\longrightarrow$A is such that either $[D^2(\chi),\chi^2]\;or\;(D^2(\chi),\chi]+(D(\chi))^2$ lies in the jacobson radical of A for all $\chi$$\in$A. Then D(A) is contained in the Jacobson radical of A.

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.227-241
    • /
    • 2009
  • Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$ for all $x\;{\in}\;A$. Then we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.259-296
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $D(x)^2$[D(x),x] $\in$ rad(A) or [D(x),x]$D(x)^2$ $\in$ rad(A) for all x $\in$ A. In this case, we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.179-201
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D\;:\;A{\rightarrow}A$ such that $D(x)[D(x),x]^2\;{\in}\;rad(A)$ or $[D(x), x]^2 D(x)\;{\in}\;rad(A)$ for all $x\;{\in}\ A$. In this case, we have $D(A)\;{\subseteq}\;rad(A)$.

  • PDF

PSEUDO JORDAN HOMOMORPHISMS AND DERIVATIONS ON MODULE EXTENSIONS AND TRIANGULAR BANACH ALGEBRAS

  • Ebadian, Ali;Farajpour, Fariba;Najafzadeh, Shahram
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • This paper considers pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. We characterize pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. Moreover, we define pseudo derivations on the above stated Banach algebras and characterize this new notion on those algebras.