LINEAR JORDAN DERIVATIONS ON BANACH ALGEBRAS

  • Published : 1998.06.01

Abstract

Let A be a noncommutative Banach algebra. Suppose that a continuos linear Jordan derivation D:A$\longrightarrow$A is such that either $[D^2(\chi),\chi^2]\;or\;(D^2(\chi),\chi]+(D(\chi))^2$ lies in the jacobson radical of A for all $\chi$$\in$A. Then D(A) is contained in the Jacobson radical of A.

Keywords

References

  1. Proc. Amer. Math. Soc. v.104 Jordan derivations on semiprime rings M.Bresar
  2. Proc. Amer. Math. Soc. v.114 On a generalization of the notion of centralizing mappings M.Bresar
  3. Comm. in Algebra v.23 no.10 On derivations and commutativity in semiprime rings Q.Deng;H.E.Bell
  4. Proc. Amer. Math. Soc. v.8 Derivations in prime rings E.Posner
  5. Proc. Amer. Soc. v.24 Jordan homomorphisms and derivations on semisimple Banach algebras A.M.Sinclair