• Title/Summary/Keyword: Jordan Derivations

Search Result 62, Processing Time 0.022 seconds

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.957-972
    • /
    • 2020
  • Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.65-87
    • /
    • 2014
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. We show that if there exists a continuous linear Jordan derivation D : A ${\rightarrow}$ A such that [D(x), x]$D(x)^3{\in}$ rad(A) for all $x{\in}A$, then D(A) ${\subseteq}$ rad(A).

A RESULT OF LINEAR JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1998
  • The purpose of this paper is to prove the following result: Let A be a noncom mutative Banach algebra. Suppose that $D:A{\rightarrow}A$ is a continuous linear Jordan derivation such that $D^2(x)D(x)^2{\in}rad(A)$ for all $x{\in}A$. Then D maps A into its radical.

  • PDF

LINEAR JORDAN DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.539-546
    • /
    • 1998
  • Let A be a noncommutative Banach algebra. Suppose that a continuos linear Jordan derivation D:A$\longrightarrow$A is such that either $[D^2(\chi),\chi^2]\;or\;(D^2(\chi),\chi]+(D(\chi))^2$ lies in the jacobson radical of A for all $\chi$$\in$A. Then D(A) is contained in the Jacobson radical of A.

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.535-558
    • /
    • 2013
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D(x)^3[D(x),x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.227-241
    • /
    • 2009
  • Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$ for all $x\;{\in}\;A$. Then we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.259-296
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $D(x)^2$[D(x),x] $\in$ rad(A) or [D(x),x]$D(x)^2$ $\in$ rad(A) for all x $\in$ A. In this case, we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.179-201
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D\;:\;A{\rightarrow}A$ such that $D(x)[D(x),x]^2\;{\in}\;rad(A)$ or $[D(x), x]^2 D(x)\;{\in}\;rad(A)$ for all $x\;{\in}\ A$. In this case, we have $D(A)\;{\subseteq}\;rad(A)$.

  • PDF