• Title/Summary/Keyword: Jones polynomial

Search Result 19, Processing Time 0.019 seconds

FOUNDATIONS OF THE COLORED JONES POLYNOMIAL OF SINGULAR KNOTS

  • Elhamdadi, Mohamed;Hajij, Mustafa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.937-956
    • /
    • 2018
  • This article gives the foundations of the colored Jones polynomial for singular knots. We extend Masbum and Vogel's algorithm [26] to compute the colored Jones polynomial for any singular knot. We also introduce the tail of the colored Jones polynomial of singular knots and use its stability properties to prove a false theta function identity that goes back to Ramanujan.

A RECURRENCE RELATION FOR THE JONES POLYNOMIAL

  • Berceanu, Barbu;Nizami, Abdul Rauf
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.443-462
    • /
    • 2014
  • Using a simple recurrence relation, we give a new method to compute the Jones polynomials of closed braids: we find a general expansion formula and a rational generating function for the Jones polynomials. The method is used to estimate the degree of the Jones polynomials for some families of braids and to obtain general qualitative results.

A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS

  • Lee, Eun-Ju;Lee, Sang-Youl;Seo, Myoung-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.919-947
    • /
    • 2009
  • In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C($-2n_1$, $2n_2$, $-2n_3$, ..., $(-1)_r2n_r$) in terms of $n_1$, $n_2$, ..., $n_r$. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link $L^{(3)}$ with rational quotient L = C(2, $n_1$, -2, $n_2$, ..., $n_r$, $(-1)^r2$) for any nonzero integers $n_1$, $n_2$, ..., $n_r$ and give a formula for the span of the Jones polynomial of $L^{(3)}$ in terms of $n_1$, $n_2$, ..., $n_r$ with $n_i{\neq}{\pm}1$ for all i=1, 2, ..., r.

AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL

  • Cho, Seobum;Kim, Soojeong
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.95-113
    • /
    • 2018
  • A mathematical knot is an embedded circle in ${\mathbb{R}}^3$. A fundamental problem in knot theory is classifying knots up to its numbers of crossing points. Knots are often distinguished by using a knot invariant, a quantity which is the same for equivalent knots. Knot polynomials are one of well known knot invariants. In 2006, J. Przytycki showed the effects of a n - move (a local change in a knot diagram) on several knot polynomials. In this paper, the authors review about knot polynomials, especially Jones polynomial, and give an alternative proof to a part of the Przytychi's result for the case n = 3 on the Jones polynomial.

COMBINATORIAL WEBS OF QUANTUM LIE SUPERALGEBRA sl(1|1)

  • Kim, Dong-Seok
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.469-479
    • /
    • 2009
  • Temperley-Lieb algebras had been generalized to web spaces for rank 2 simple Lie algebras which led us to link invariants for these Lie algebras as a generalization of Jones polynomial. Recently, Geer found a new generalization of Jones polynomial for some Lie superalgebras. In this paper, we study the quantum sl(1|1) representation theory using the web space and find a finite presentation of the representation category (for generic q) of the quantum sl(1|1).