• Title/Summary/Keyword: Joint Optimization

Search Result 457, Processing Time 0.025 seconds

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

Joint Tx-Rx Optimization in Additive Cyclostationary Noise with Zero Forcing Criterion (가산성 주기정상성 잡음이 있을 때 Zero Forcing 기반에서의 송수신단 동시 최적화)

  • Yun, Yeo-Hun;Cho, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.724-729
    • /
    • 2007
  • In this paper, we consider a joint optimization of transmitter and receiver in additive cyclostationary noise with zero forcing criterion. We assume that the period of the cyclostationary noise is the same as the inverse of the symbol transmission rate and that the noise has a positive-definite autocorrelation function. The data sequence is modeled as a wide-sense stationary colored random process and the channel is modeled as a linear time-invariant system with a frequency selective impulse response. Under these assumptions and a constraint on the average power of the transmitted signal, we derive the optimum transmitter and receiver waveforms that jointly minimizes the mean square error with no intersymbol interference. The simulation results show that the proposed system has a better BER performance than the systems with receiver only optimization and the systems with no transmitter and receiver optimization.

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

Analysis of Human Neck Loads During Isometric Voluntary Ramp Efforts: EMG-Assisted Optimization Modeling Approach

  • Choi, Hyeon-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.338-349
    • /
    • 2000
  • Neck muscle forces and spinal loads at the C4/5 level were estimated that result from isometric voluntary ramp efforts gradually developing to maximums in flexion, extension, left lateral bending and right lateral bending. Electromyographic (EMG) activities, a three-dimensional anatomic data of the neck and a hybrid model, EMG-assisted optimization (EMGAO) model, were used. The model computed the cervical loads at 25%,50%,75%, and 100% of peak moments. The highest model-predicted C4/5 joint compressive forces occurred during flexion; $361\;({\pm}164)\;N,\;811\;({\pm}288)\;N,\;1207\;({\pm}491)\;N\;and\;1674\;({\pm}319)\;N$ in 25%, 50%, 75% and 100% of peak moment respectively. Variations in load distribution among the agonistic muscles and co-contractions of antagonistic muscles were estimated during ramp efforts. Results suggest that higher C4/5 joint loads than previously reported are possible during isometric, voluntary muscle contractions. These higher physiological loads at C4/5 level must be considered possible during orthopedic reconstruction at this level.

  • PDF

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

A Study on Development of Dissimilar Welding Optimization Technique for Auto-Lifting Magnet (자동 리프팅 마그넷 유도코아자력절연부의 이종재 아크용접의 최적화)

  • Oh Sae-Kyoo;Kim, Il-Seok;Kwon, Sang-Woo;Lee, Hack-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.83-89
    • /
    • 1999
  • In this paper an experimental study on the development of the shielded metal are welding(SMAW) optimization technique for the dissimilar materials SS41 and STS304 of Auto-Lifting Magnet core plate was carried out. It was confirmed that the optimum welding heat input range was 37.5 to 45 kj/cm by considering on the strength and fatigue life of the welded joints more than 100% joint efficiency. And the quantitative relationship empirical wquation between the strength toughness adn fatigue life and the weld heat input was obtained.

  • PDF

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO

  • Yu, Yang;Samali, Bijan;Zhang, Chunwei;Askari, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.277-298
    • /
    • 2019
  • Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.

Optimization of automatic power control of pulsed reactor IBR-2M in the presence of instability

  • Pepelyshev, Yu.N.;Davaasuren, Sumkhuu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2877-2882
    • /
    • 2022
  • The paper presents the main results of computational and experimental optimization of the automatic power control system (AC) of the IBR-2M pulsed reactor in the presence of a high level of oscillatory instability. Optimization of the parameters of the AC made it possible to significantly reduce the influence of random and deterministic oscillations of reactivity on the noise of the pulse energy, as well as to sharply reduce the manifestation of the oscillatory instability of the reactor. As a result, the safety and reliability of operation of the reactor has increased substantially.