Analysis of Human Neck Loads During Isometric Voluntary Ramp Efforts: EMG-Assisted Optimization Modeling Approach

  • Choi, Hyeon-Ki (Division of Orthopedic Surgery and Department of Mechanical Engineering University of Wisconsin)
  • Published : 2000.03.01

Abstract

Neck muscle forces and spinal loads at the C4/5 level were estimated that result from isometric voluntary ramp efforts gradually developing to maximums in flexion, extension, left lateral bending and right lateral bending. Electromyographic (EMG) activities, a three-dimensional anatomic data of the neck and a hybrid model, EMG-assisted optimization (EMGAO) model, were used. The model computed the cervical loads at 25%,50%,75%, and 100% of peak moments. The highest model-predicted C4/5 joint compressive forces occurred during flexion; $361\;({\pm}164)\;N,\;811\;({\pm}288)\;N,\;1207\;({\pm}491)\;N\;and\;1674\;({\pm}319)\;N$ in 25%, 50%, 75% and 100% of peak moment respectively. Variations in load distribution among the agonistic muscles and co-contractions of antagonistic muscles were estimated during ramp efforts. Results suggest that higher C4/5 joint loads than previously reported are possible during isometric, voluntary muscle contractions. These higher physiological loads at C4/5 level must be considered possible during orthopedic reconstruction at this level.

Keywords

References

  1. Butchthal, F. and Schmalbruch, H., 1970, 'Contraction times and fibre types in intact human muscle,' Acta Physiol. Scand. Vol. 79, pp. 435-452
  2. Choi, H., Vanderby, R., 1999, 'Comparison of Biomechanical Human Neck Models: Muscle Forces and Spinal Loads at C4/5 Level,' J. Appl. Biomech. Vol. 15-2, pp. 120-138
  3. Cholewicki, J. and McGill, S. M., 1994, 'EMG assisted optimization: hybrid approach for estimating muscle forces in an indeterminate biomechanical model,' J. Biomech. Vol. 27(10), pp.1287-1289 https://doi.org/10.1016/0021-9290(94)90282-8
  4. Cholewicki, J., Panjabi, M. M., and Khachatryan, A., 1997, 'Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture,' Spine Vol. 22(19), pp. 2207-2212
  5. Cholewicki, J., McGill, S. M., and Norman, R. W., 1995, 'Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of hybrid approach,' J. Biomech. Vol. 28(3), pp. 321-331 https://doi.org/10.1016/0021-9290(94)00065-C
  6. Clauser, C. E., McConville, J. T., and Young, J. W., 1969, 'Weight, volume, and center of mass of segments of the human body,' Wright-Patterson Air Force Base, Ohio, pp. AMRL-TR-69-70
  7. Foust, D. R., Chaffin, D. B., Snyder, R. G., and Baum, J. K., 1973, 'Cervical range of motion and dynamic response and strength of cervical muscles,' Proceedings of the 17th Stapp Car Crash Conference, SAE Paper 73075, pp. 285-308
  8. Gardner-Morse, M. G. and Stokes, I. A., 1998, 'The effects of abdominal muscle coactivation on lumbar spine stability,' Spine Vol. 23(1), pp. 86-92 https://doi.org/10.1097/00007632-199801010-00019
  9. Hof, A. L., 1984 'EMG and muscle force: an introduction,' Human Movement Science Vol. 3, pp. 119-153 https://doi.org/10.1016/0167-9457(84)90008-3
  10. Kim, S. and Pandy, M. G., 1998, 'An Optimal Control Model for Determining Articular Contact Forces at the Human Knee During Rising from a Static Squat Position,' KSME Int'l. Journal in Korea Vol. 12, No.5, pp. 847 - 858
  11. Ladin, Z., Murthy, K. R., and Deluca, C. J., 1989, 'Mechanical Recruitment of Low-Back Muscles,' Spine Vol. 14, pp. 927-938
  12. Maiman, D. J., Snaces, A. J., Myklebust, B., Larson, S. J., Houterman, C., Chilbert, M., and El-Ghatit, A. Z., 1983, 'Compression Injuries of the Cervical Spine: A Biomechanical Analysis,' Neurosurgery Vol. 13, pp. 254-260
  13. Marras, W. S., 1988, 'Predictions of Forces Acting Upon the Lumbar Spine Under Isometric and Isokinetic Conditions: A Model Experiment Comparison,' Int. J. Ind. Ergonomics Vol. 3, pp. 19-27 https://doi.org/10.1016/0169-8141(88)90004-2
  14. McGill, S. M. and Norman, R. W., 1986, 'Partitioning of the L4/L5 Dynamic Moment into Disc, Ligamentous, and Muscular Component During Lifting,' Spine Vol. 11, pp. 666 -678
  15. McGill, S. M., 1992 'A MyoelEctrically Based Dynamic Three-Dimensional Model to Predict Loads on Lumbar Spine Tissues During Lateral Bending,' J. Biomech. Vol. 25, pp. 395-414 https://doi.org/10.1016/0021-9290(92)90259-4
  16. McGill, S. M., 1991, 'Electromyographic Activity of the Abdominal and Low Back Musculature During the Generation of Isometric Dynamic Axial Trunk Torque: Implications for Lumbar Mechanics,' J. Orthop. Res. Vol. 9, pp. 91-103 https://doi.org/10.1002/jor.1100090112
  17. Milner-Brown, H. S., Stein, R. B., and Yemm, R., 1973, 'The Contractile Properties of Human Motor Units During Voluntary Isometric Contractions,' J. Physiol. Vol. 228, pp. 285 - 306
  18. Moroney, S. P., Schultz, A. B., and Miller, J. A. A., 1988, 'Analysis and Measurement of Neck Loads,' J. Orthop. Res. Vol. 6, pp. 713 - 720 https://doi.org/10.1002/jor.1100060514
  19. Olney, S. J. and Winter, D. A., 1985, 'Predictions of Knee and Ankle Moments of Force in Walking from EMG and Kinematic Data,' J. Biomech. Vol. 18, pp. 9-20 https://doi.org/10.1016/0021-9290(85)90041-7
  20. Potvin, J. R. and Norman, R. W., 1993, 'Quantification of Erector Spinae Muscle Fatigue During Prolonged, Dynamic Lifting Tasks,' Europ. J. Appl. PhysioL and Occup. Physiol. Vol. 67, pp. 554-562 https://doi.org/10.1007/BF00241654
  21. Schultz, A. B. and Andersson, G. B. J., 1981, 'Analysis of Loads on the Lumbar Spine,' Spine Vol. 6, pp. 76-82
  22. Schultz, A. B., Andersson, G. B. J., Haderspeck, K., Ortengren, R., Nordin, M., and Bjork, R., 1982a, 'Analysis and Measurements of Lumbar Trunk Loads in Tasks Involving Bends and Twists,' J. Biomech. Vol. 15, pp. 669-675 https://doi.org/10.1016/0021-9290(82)90021-5
  23. Schultz, A. B., Andersson, G. B. J., R., Bjork, R., and Nordin, M., 1982b, 'Analysis and Quantitative Myoelectric Measurements of Loads on the Lumbar Spine when Holding Weights in Standing Postures,' Spine Vol. 7, pp. 390-397
  24. Schultz, A. B., Cromwell, R., Warwick, D., and Andersson, G. B. J., 1987, 'Lumbar Trunk Muscle Use in Standing Isometric Heavy Exertions,' J. Orthop. Res. Vol. 5, pp. 320-326 https://doi.org/10.1002/jor.1100050303
  25. Schultz, A. B., Haderspeck, K., Warwick, D., and Portillo, D., 1983, 'Use of Lumbar Trunk Muscles in Isometric Performance of Mechanically Complex Standing Tasks,' J. Orthop. Res. Vol. 1, pp. 77-91 https://doi.org/10.1002/jor.1100010111
  26. Shea, M., Edwards, W. T., White, A. A., and Hayes, W. C., 1991, 'Variations of Stiffness and Strength Along the Human Cervical Spine,' J. Biomech. Vol. 24, pp. 95-107
  27. Son, K. and Miller, J. A. A., 1993, 'Trunk and Lower Extremity Muscle Activity in Seated Weight-Moving Tasks: Three-Dimensional Analyses of Intersubject and Intertask Differences,' KSME Journal in Korea Vol. 7, No.4, pp. 372 -388
  28. Stokes, I. A. F., Rush, S., Moffroid, M., Johnson, G. B., and Haugh, L. D., 1987, 'Trunk Extensor EMG- Torque Relationship,' Spine Vol. 12, pp. 770-776
  29. Thelen, D. G., Schultz, A. B., and Ashton -Miller, J. A., 1995 'Co-Contraction of Lumbar Muscles During the Development of Time- Varying Triaxial Moments,' J. Orthop. Res. Vol. 13 (3), pp. 390- 398 https://doi.org/10.1002/jor.1100130313
  30. Vink, P., Daanen, H. A. M., and Verb out, A. J., 1989, 'Specificity of Surface-EMG on the Intrinsic Lumbar Back Muscles,' Human Mov. Sci. Vol. 8, pp. 67 -78 https://doi.org/10.1016/0167-9457(89)90024-9
  31. Vink, P., van der Velde, E. A., and Verbout, A. J., 1987 'A Functional Subdivision of the Lumbar Extensor Musculature,' Electromyogr. Clin. Neurophysiol. Vol. 27, pp. 517-525