• Title/Summary/Keyword: Joint Loading

Search Result 766, Processing Time 0.028 seconds

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

Detailed Analysis of Vertical Connector in Modular Roadway Slab Under Temperature and Lifting Loading (온도하중과 인양하중에 영향을 받는 모듈러 도로 슬래브 수직연결부의 상세해석)

  • Kim, WooSeok;Nam, Jeonghee;Min, Geunhyeong;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.509-517
    • /
    • 2016
  • In terms of bridge construction, the concrete deck slab is weak members compared to beam members of the bridge supports. Deck slabs must be sound to support and distribute vehicle loads. If slabs are not enough to support the loads, it should be replaced. Bridge deck replacement has been an important industry over the world since the construction is simplified to shorten construction time and to save construction costs. Slab module provides a quickly, easily and reliably construction method in order to avoid high cost and minimum traffic disruption. in addition, slab module shows high reliability since they are factory products. However, slab module should be considered in the performance under various loads. In this study, structural analysis is performed to evaluate the performance of slab module under vehicle loads and temperature loads. Spiral rebar is also utilized around the vertical joints to improve the structural integrity under the lifting loads. In order to confirm the weak area of slab module for the lift condition, numerical analysis has been performed.

Three-Dimensional Video Analysis of the Gate Patterns in Normal Children and Hemiplegic Children with Cerebral Palsy (정상아와 편마비 뇌성마비아의 삼차원 보행분석)

  • Lee Jin-Hee;Bae Sung-Soo;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.127-145
    • /
    • 1997
  • The purpose of this study wa9 to analyse the gait patterns of two female children with hemiplegic cerebral palsy by using the three-dimensional video motion analysis technique. Case 1 has mild spastic hemiplegia on the right side while Case 3 has moderate spastic hemiplegia on the left side. A group of 10, normal female children of the same age(7-8 years old) were selected as the control group for comparison. Time and distance variables as well as the Center of Mass displacement, and the pelvic and joint motions in three anatomical planes were analysed for this purpose. The following observations were made through the analysis : Case 1 revealed an asymmetrical gait pattern in which the step length of the unaffected side was shorter than that of the affected side, which wan a result of the effort to minimize loading on the affected leg by shortening the swing phase of the unaffected leg. Case 1 scored similar phase ratios, cadence and walking velocity to the normal group. A slight posterior tilt of the pelvis was observed throughout the gait cycle. Less hip and knee flexion than the normal group was observed, and demonstrated hyperextension of the knee in the terminal stance phase. The main problem in case 1 originated from the insufficient dorsiflexion of the affected foot during the swing phase. Therefore, Case 1 has difficulty with foot clearance in the swing phase. Usually, this is compensated for by using exessive hip abduction and medial rotation in conjuction with trunk elevation as well as increased vortical displacement of the center of mass. Case 1 revealed a foot-flat initial contact pattern. Case 2 was characterized by a consistent retraction ef the affected aide of the body througout the gait cycle, As a result, an asymmetrical gait pattern with increased stance phase ratios of the unaffected side was observed. In spite of this the step lengths of both sieds were similar. Case 2 scored lower cadence and walking speed than the normal group with lower gait stability. The main problem in Case 2 originated from an excessive plantaflexion of the affected foot which, in turn, rebutted in high hip and knee flexion. Hyperextension of the knee was observed at mid-stance, and execessive anterior tilt of the pelvis throughout the gait cycle was noticed. A gait pattern with high hip abduction and medial circumduction was maintained for the stability in the stance phase and foot clearance in the swing phase. Case 2 revealed a forefoot-contact initial contact pattern.

  • PDF

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint (PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구)

  • Kim, Sung-Hyuk;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Ball shear test was performed by test variables such as loading speed and annealing time in order to investigate the effect of surface finishes on the bonding strength of Sn-1.2Ag-0.7Cu-0.4In Pb-free solder. The shear strength increased and the ductility decreased with increasing shear speed. With increasing shear speed, the electroless nickel immersion gold (ENIG) finish showed dominant brittle fracture mode, while organic solderability preservative (OSP) finish showed pad open fracture mode. The shear strength and toughness for both surface finishes decreased with increasing annealing time under the high-speed shear test of 500 mm/s. Typically, the thickness of intermetallic compound increased with increasing annealing time, which means that exposure of brittle fracture became much easier. With increasing annealing time, the both ENIG and OSP finishes exhibited the pad open fracture mode. Overall, ENIG finish showed higher shear strength rather than OSP finish due to its superior barrier stability.

Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (복합트러스교의 격점구조별 비틀림 거동)

  • Jung, Kwang-Hoe;Lee, Sang-Hyu;Yi, Jong-Won;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • HTB (hybrid truss bridge) steel truss webs instead of concrete webs in prestressed box girder bridges has been widely used in, because of its structural benefit such as relatively less self-weight and good aesthetics due to open web structure. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The researches were performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showned that HTB applied to a curved bridge or a eccentric loading bridge, characteristic has a weak torsional capacity compared to an ordinary PSC box girder bridges due to the open structure of HTB. In this study, three box shaped hybrid truss specimens were made and the torsional test and evaluation for them were performed in order to find out the torsional behavior of HTB according to the connection system.

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse (플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho;Kim, Seung-yu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.473-479
    • /
    • 2020
  • In this study, the structural experiment was conducted with two types of specimens to investigate the mechanical behavior of the column-rafter-purlin connection of an arch-type greenhouse under monotonic loading. Based on the experimental results, the flexural performance was analyzed for two types of connections, and connection classification was attempted. Type B showed 77% of flexural performance compared to Type A, and both types showed that the rigidity and flexural strength did not reach the level of the full rigid. The behavior of the column-rafter-purlin connection was dominated by local buckling due to deformation of the weld and fasteners. As a result of connection classification by AISC standard, both Type A and B connections showed a result that did not meet the rigid connection performance assumed during design, and were classified as simple connection. Therefore, the connection performance evaluation and classification results show that the greenhouse design should be made in consideration of connection performance and in order to design a reliable greenhouse structure, a study on establishing clear design standards for the greenhouse connection is necessary.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.