• Title/Summary/Keyword: Johann Bernoulli

Search Result 5, Processing Time 0.021 seconds

변분법과 최대.최소 : 역사적 고찰

  • 한찬욱
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper we investigate the origin of the variational calculus with respect to the extremal principle. We also study the role the extremal principle has played in the development of the calculus of variations. We deal with Dido's isoperimetric problem, Maupertius's least action principle, brachistochrone problem, geodesics, Johann Bernoulli's principle of virtual work, Plateau's minimal surface and Dirichlet principle.

  • PDF

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

Historical Background for Derivation of the Differential Equation mẍ+kx = f(t) (미분방정식 mẍ + kx = f(t)의 역사적 유도배경)

  • Park, Bo-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • This paper presents a historical study on the derivation of the differential equation of motion for the single-degree-of-freedom m-k system with the harmonic excitation. It was Euler for the first time in the history of vibration theory who tackled the equation of motion for that system analytically, then gave the solution of the free vibration and described the resonance phenomena of the forced vibration in his famous paper E126 of 1739. As a result of the chronological progress in mechanics like pendulum condition from Galileo to Euler, the author asserts two conjectures that Euler could apply to obtain the equation of motion at that time.

Empirical and Mathematical Study on the Brachistochrone Problem (최소시간 강하선 문제의 실증적·수학적 고찰)

  • Lee, Dong Won;Lee, Yang;Chung, Young Woo
    • East Asian mathematical journal
    • /
    • v.30 no.4
    • /
    • pp.475-491
    • /
    • 2014
  • We can easily see the 'cycloid slide' in the many mathematics and science museums. The educational materials, however, do not give us any mathematical principle. For this reason, we, in this thesis, first study the brachistochrone problem in the history of mathematics, and suggest a method of how to teach the principle using 'the dynamic geometry software GSP5' in order to help students understand the idea that the cycloid is the brachistochrone. Secondly, we examine the origin of the calculus of variations and apply it to prove the brachistochrone problem in order to build up the teachers' background knowledge. This allows us to increase the worth of history of mathematics and recognize how useful the learning is which uses technological tools or materials, and we can expect that the learning which makes use of cycloid slide will be meaningful.

BETTI NUMBERS OF GAUSSIAN FIELDS

  • Park, Changbom;Pranav, Pratyush;Chingangbam, Pravabati;Van De Weygaert, Rien;Jones, Bernard;Vegter, Gert;Kim, Inkang;Hidding, Johan;Hellwing, Wojciech A.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; ${\beta}_0$ is the number of connected regions, ${\beta}_1$ is the number of circular holes (i.e., complement of solid tori), and ${\beta}_2$ is the number of three-dimensional voids (i.e., complement of three-dimensional excursion regions). Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. ${\beta}_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). ${\beta}_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and ${\beta}_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum n in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as n decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.