• Title/Summary/Keyword: Jet Velocity

Search Result 836, Processing Time 0.024 seconds

Correlations of Internal Nozzle Flow in Circular and Elliptical Nozzles with External Flow (원형 및 타원형 노즐 내부유동과 외부유동의 상관관계)

  • Ku, Kun-Woo;Hong, Jung-Goo;Park, Cheol-Won;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.325-333
    • /
    • 2012
  • An experimental study was carried out to determine the correlation between the internal flow in a circular nozzle and elliptical nozzles with the external flow. The flow rate, spray angle and drop size were measured under various conditions of the injection pressure. Numerical simulations were attempted to investigate the internal flow structure in the elliptical nozzles, because the experimental study was limited in its measurements of flow velocity and pressure distributions in the relatively small orifice. In the case of the elliptical nozzles, the disintegration characteristics of the liquid jet were significantly different from those of the circular nozzle. Surface breakup was observed at the jet issued from the elliptical nozzles with injection pressure. This is due to the internal flow structure, which is reattached to the orifice wall at the minor axis plane of the elliptical nozzle, unlike that observed with the circular nozzle.

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

The Characteristic of Extinguishment of Engine Nacelle Fire Using a Bluff Body (둔각 물체를 이용한 엔진 나셀 화재 소화 특성)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The purpose of the study is to assess the extinguishing concentration of inert gases in engine nacelle fire. The experiment was performed with a two dimensional rectangular bluff body stabilized flames, where the fuel was ejected to counter flow and co-flow against an oxidizer stream. Two inert gases, $CO_2$ and $N_2$, were used for extinguishing agent in the oxidizer and methane was used for fuel. The main experimental parameters were the direction of injecting fuel, the kinds of agent and the velocity ratio between air and fuel streams, which controlled the mixing characteristic near bluff body and the strength of recirculation zone in the downstream. The result shows the flame structure and the mode were strongly dependent with fuel/air ratio and the fuel jet direction. For both flow configurations, the extinguishing concentration of $CO_2$ was smaller than the $N_2$ because of the large heat capacity of $CO_2$. However, the concentration of inert gasesat blowout was much smaller than those in the cup burner and coflow jet diffusion flames, which implies that the extinction mechanism of bluff body stabilized flames was mainly due to the aerodynamic aspect. Compared to co-flow fuel injection, the extinguishing concentration of inert gases under counter flow configuration was lower. The effect of direction might result from the mixing characteristic and strength of recirculation zonearound a bluff body. More details should be investigated for the characteristic of recirculation zone in the wake of bluff body using the LES(Large Eddy Simulation).

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

A Study of Flow Characteristics by Acoustic Excitation on the Laminar Non-premixed Jet Flame (층류 비예혼합 분류화염에서 음향가진에 의한 유동특성 연구)

  • Oh, Kwang-Chul;Lee, Kee-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • An experimental study has been conducted to investigate the effects of forcing amplitude on the tone-excited non-premixed jet flame of the resonance frequency. Visualization techniques are employed using the laser optic systems, which are RMS tomography, PLIF and PIV system. There are three lift-off histories according to the fuel flow rates and forcing amplitudes; the regime I always has the flame base feature like turbulent flame when the flame lift-off, while the flame easily lift-off in the regime II even if a slight forcing amplitude applied. The other is a transient regime and occurs between the regime I and regime II, which has the flame base like the bunsen flame of partial premixed flame. In the regime I and II, the characteristics of the mixing and velocity profile according to the forcing phase were investigated by the acetone PLIF, PIV system. Particular understanding is focused on the distinction of lift-off history in the regime I and II.

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft (방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가)

  • Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

Basic Study on Lift-off Characteristics of Non-Premixed Flames of Methane-Air Jet in a Tube (관 내부 메탄-공기 분류 비예혼합 화염의 부상 특성 기초 연구)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • Flame lift-off conditions determine the operating conditions of burners. It is known that a flame can be lifted when the Schmidt number (Sc), which is the ratio of the dynamic viscosity to the mass diffusivity, is greater than unity. In this study, the flame lift-off characteristics of non-premixed flames of propane (Sc > 1) and methane (Sc < 1) in a coaxial outer air tube were experimentally compared. The experimental results indicated that stable lifted flames could be obtained even when Sc < 1 in a confined air tube. On the basis of the results of a simple numerical analysis, it was confirmed that a new flame stabilization mechanism exists in the tube. A velocity field is preferentially developed upstream of the flame, and it results in a new stabilization condition. This result can be very useful in explaining the stabilization of the flames of ordinary burners in which a flame is produced in a confined space.

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF

Combustion Characteristics of Ionized Fuels for Battery System Safety (배터리 시스템 안전을 위한 이온화 연료의 연소 특성)

  • Ko, Hyeok Ju;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Many electronic devices are powered by various rechargeable batteries such as lithium-ion recently, and occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the results have been still unsatisfied. Because most rechargeable batteries are operated on the ion state during charge and discharge of electricity and the combustion of ion state has big difference with normal combustion. Here we focused on the effect of ions including an electron during combustion process. The effects of an ionized fuel on the flame stability and the combustion products were experimentally investigated in the propane jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the propane was ionized with th ionizer (SUNJE, SPN-11). The results show that toe overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased by fuel ionization, especially high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.