• Title/Summary/Keyword: Jar fermentor

Search Result 107, Processing Time 0.021 seconds

Determination of Medium Components in the Flocculating Activity and Production of Pestan Produced by Pestalotiopsis sp. by Using the Plackett-Burman Design

  • Moon, Seong-Hoon;Hong, Soon-Duck;Kwon, Gi-Seok;Suh, Hyun-Hyo;Kim, Hee-Sik;An, Keug-Hyun;Oh, Hee-Mock;Mheen, Tae-Ick;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.341-346
    • /
    • 1998
  • Optimization for the production of Pest an was followed by the Plackett-Burman Design, using modified Czapek-dox medium as the starting point. At the flask level, $K_2HPO_4$, $MgSO_4{\cdot}7H_2O$, and aeration variables positively affected the Pestan production, DCW (dry cell weight), apparent viscosity, and flocculating activity response. KCI and $FeSO_4{\cdot}7H_2O$ negatively affected the Pestan production, DCW, apparent viscosity, and flocculating activity response. Aeration variable was shown to have a positive effect on only the flocculating activity response among Pestan production, DCW, and apparent viscosity responses. In comparison of the positive and negative variables media conditions, Pestan production and flocculating activity differed by about 9 and 125 times, respectively. In particular, at the jar fermentor level, the aeration variable was the most important factor of the all responses (pestan production, DCW, apparent viscosity, flocculating activity, and anionic charge density). The flocculating activity and apparent viscosity of Pestan were closely related to the molecular chain length and charge density.

  • PDF

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF

Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1221-1225
    • /
    • 2007
  • A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.

Production of Carotenoid from Halophilic Erythrobacter sp. and characterization of Physiological Properties (해양미생물 Erythrobacter 속으로부터 Carotenoid의 생산 및 그 생리활성)

  • 김종덕;강동수;김민용;노승배;최명락;송상호;백승한;서효진;김대현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.143-151
    • /
    • 2001
  • A marine bacterium producing carotenoid was isolated from the Yosu coastal area of South Korea, which was recorded as MCK-1. It was identified as Erythrobacter sp. Optimium conditions of marine carotenoid fermentation from Erythrobacter sp. were pH 6.0, a temperature of $25^{\circ}C$, 16 mM mannitol as a carbon source, 0.5% tryptone as a nitrogen source, 0.1 mM $Fe^{+2}$ ion as a mineral source and 1$\mu$M of cyanocobalamine as a growth factor in a jar-fermentor. Erythrobacter sp. was produced 351.27 mg/100mL of the marine carotenoid in these optimum conditions. This marine carotenoid was composed of 4 different conpounds, like as notoxanthin (61.4%), can thaxanthin (24.6%), fucoxanthin (8.2%), and zeaxanthin (5.8%). Physiological properties including antibacterial activity, cytotoxic effect, antioxidative effect and free radical scavenging activity were characterized with crude carotenoid. Carotenoid exhibited no antibacterial activity against E. coli and lactobacillus bulgaricus, but showed cytotoxic effect against cancer cells such as HepG2 (Hepatocellular carcinoma, human, ATCC HB-8065) and HeLa (Cervical carcinoma, human, ATCC CCL-2) cells. The impediment ratios for HepG2 and HeLa cell were 37.14% and 33.78%, respectively. This carotenoid expressed a strong antioxidative effect (77%) against CCL-13 5 $\mu\textrm{g}$/mL and 50 $\mu\textrm{g}$/mL crude carotenoid, respectively.

  • PDF

Production of Recombinant Trehalose Synthase from Thermus caldophilus GK24 (재조합 내열성 트레할로스 합성효소의 생산)

  • Choi, Jae-Youl;Cha, Wol-Suk;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.298-301
    • /
    • 2006
  • A gene(GeneBank AF 135796) coding for a trehalose synthase from Thermus caldophilus GK24 was cloned into Escherichia coli K12 using five vector systems. The constitutive expression system(pHCETS) which shows the highest trehalose synthase activity from flask culture of recombinant E. coli was selected for the production of trehalose from maltose. For the shake flask culture, the final dry cell weight was 0.9 g/L and the trehalose synthase activity was 25 U/mL. Fed-batch culture of recombinant E. coli harboring plasmid pHCETS which uses the glycerolas a carbon source was performed in jar fermentor: the dry cell weight of 20 g/L and the trehalose synthase activity of 13.7 U/mL were attained in 48 h.

Factorial design에 의한 Acetobacter xylinum KJ1의 Bacterial cellulose 생산조건의 최적화

  • Lee, Ji-Eun;Jeong, Sang-Gi;Lee, Yong-Un;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.131-135
    • /
    • 2002
  • Acetobacter xylinum KJ1 efficiently producing bacterial cellulose(BC) in shaking culture was isolated from a rotten grape. The strain was used to investigate optimum operating conditions for increasing BC production and factorial design model was employed for the optimization. The results of experiments were statistically analyzed by SAS program. Reciprocal effects of each factors(carbon source concentration, shaking speeds(rpm), oxygen pressure, and CSL concentration) and culture condition of BC production were examined by getting regression equation of the dependent variable. Comparisons between experimental results and predicted results about BC concentration were done in total 24 experiments by combination of each factors using SAS program, and the correlation coefficients of BC concentration and BC yield were 0.91 and 0.81, respectively. The agitated cultures were performed in various operation conditions of factors which affected considerably to BC production in jar fermentor. The results showed that BC concentration was 11.67g/ L in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 460rpm : 0.28 : 6%. On the other hand BC yield was 0.42g/g in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 564rpm : 0.21 : 2%. The BC production could be enhanced up to more than 65.3% by factorial design. The result of a verifying experiment under the optimal conditions determined by the factorial design to the BC production showed that the model was appropriate by obtaining BC concentration of 11.02g/L in the optimum condition

  • PDF

Exo-Polysaccharide Production in Liquid Culture of Pleurotus ferulae

  • CHOI DU BOK;KANG SI HYUNG;SONG YON HO;KWUN KYU HYUK;JEONG KYOUNG JU;CHA WOL SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.368-375
    • /
    • 2005
  • Batch cultures were carried out to optimize the exo-polysaccharide production by liquid cultures of Pleurotus ferulae. Among the various carbon sources, when $5\%$ of glucose was used, the maximum mycelial growth and exo-polysaccharide concentration reached were 8.78 g/l and 3.59 g/l, respectively. Yeast extract and polypeptone were identified as the most suitable nitrogen sources. In particular, when a mixture of $1\%$ of polypeptone and $0.8\%$ of yeast extract was used, 9.52 g/l of mycelial growth and 4.09 g/l of exo-polysaccharide were obtained. In the case of mineral sources, K$_2$HPO$_4$ and MgSO$_4$$\codt$7H$_2$0 were found to be the best mineral sources for mycelial growth and exo-polysaccharide production. Under the optimized culture conditions, the agitation speed and aeration were investigated for mycelial growth and exo­polysaccharide production in a jar fermentor. The maximum mycelial growth and exo-polysaccharide concentration at 1.5 vvm and 200 rpm obtained were 13.2 g/l and 4.95 g/l, respectively, after 10 days of culture, which were $76\%$ and $79\%$ higher than those of the basal medium. The specific growth rate was decreased with the increase of mycelial growth. However, the specific production rate of the exo-polysaccharide was proportionally increased with the specific growth rate. The proposed model profiles showed good agreement with the experimental results for the mycelial growth and exo-polysaccharide production. The specific production rate using the optimized medium was higher than that of basal medium.

Mass Production of Yeast Spores from Compressed Yeast

  • Lim, Yong-Sung;Bae, Sang-Myun;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.568-572
    • /
    • 2005
  • Saccharomyces yeast spores are more resistant to drying and storage than vegetative cells. For the mass production of yeast spores, compressed yeast was directly inoculated into a sporulation medium (SM). The effects of inoculum size and the addition of rice wine cake (RWC) into SM on the sporulation were examined using flasks. With $1\%$ inoculum of compressed yeast, $1.45{\times}10^8/ml$ of asci was obtained. The addition of $0.5\%$ RWC into SM improved the cell growth and spore yield, and the number of asci formed was $2.31{\times}10^8/ml$. The effects of culture temperature, temperature-shift, and concentrations of inoculum, potassium acetate, and RWC on the sporulation were also evaluated using a jar fermentor. The optimum temperature for spore formation was $22^{\circ}C$ where the number of asci formed was $2.46{\times}10^8/ml$. The shift of culture temperature from initial $30^{\circ}C$ for 1 day to $22^{\circ}C$ for 3 days increased the number of asci formed to $2.96{\times}10^8/ml$. The use of $2\%$ (w/v) inoculum of compressed yeast, $2\%$ potassium acetate, and $1\%$ (w/v) RWC in SM with the shift of culture temperature of initial $30^{\circ}C\;to\;22^{\circ}C$ resulted in $90\%$ sporulation ratio and formation of $6.18{\times}10^8\;asci/ml$.

Optimized Conditions for High Erythritol Production by Penicillium sp. KJ-UV29, Mutant of Penicillium sp. KJ81

  • Lee, Kwang-Jun;Lim, Jai-Yun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.173-178
    • /
    • 2003
  • To improve the erythritol productivity of Penicillium sp. KJ81, mutants were obtained using UV irradiation and NTG treatment Among these mutants, Penicillium sp. KJ-UV29 revealed no morphological changes, yet was superior to the wild strain in the following three points: (1) Penicillium sp. KJ-UV29 produced more erythritol than the wild strain under the same conditions, (2) no foam was produced during cultivation, unlike the wild strain, and (3) the mutant produced a Significantly lower amount of glycerol. Penirillium sp. KJ-UV29 produced as much as 15.1 g/L of erythritol, whereas the wild-type Penirillium sp. KJ81 only produced 11.7 g/L. Penicillium sp. KJ-UV29 only generated 6.1 g/L of glycerol, compared to 19.4 g/L produced by the wild strain. When investigating the optimal culture conditions for erythritol production by the mutant strain Penicillium sp. KJ-UV89, sucrose was identified as the most effective carbon source, and the mutant was even able to produce erythritol in a 70% sucrose-containing medium, although a 30% sucrose medium exhibited the highest productivity. The production of erythritol by Penirillium sp. KJ-UV29 was also significantly increased by the addition of ammonium carbonate, potassium nitrate, and sodium nitrate. Accordingly, under optimal conditions, Penicillium sp. KJ-UV29 produced 45.2 g/L of erythritol in a medium containing 30% sucrose, 0.5% yeast extract, 0.5% (NH$_4$)$_2$C$_2$O$_4$, 0.1% KNO$_3$, 0.1% NaNO$_3$, and 0.01% FeSO$_4$ with 1 vvm aeration and 200 rpm agitation at 37$^{\circ}C$ for 7 days in a 5-L jar fermentor.

Cultural Conditions of Exopolysaccharide KS-1 Produced by Bacillus polymyxa KS-1 (Bacillus polymyxa KS-1에 의한 다당류 KS-1 생산의 발효 조건)

  • 권기석;윤병대주현규
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 1995
  • Optimized fermentation medium and cultural conditions for the production or exopolysaccharide KS-1 with Bacillus polymyxa KS-1 was following as; 30g g1ucose, 2.59g yeast extract, $2.5g KH_2PO_4, 0.5g NaCl, 0.3g MgSO_4.7H_20, 0.1g CaC0_3 0.05g, FeSO_4.7H_2O, and 0.05g MnS0_4 . 4H_20in 1 liter distilled water. The exopolysaccharide production was influenced by the by the temperature and pH, the optimal conditions for the production of exopolysaccharide KS-1 seemed to be $30^{\circ}C$ and pH 7.0, respectively. About $10.3g/\ell$ of maximum exopolysaccharide was obtained al the initial pH 7.0, $30^{\circ}C$, 2vvm of aeration rate and 400 rpm of impeller speed in a jar fermentor.

  • PDF