Abstract
To improve the erythritol productivity of Penicillium sp. KJ81, mutants were obtained using UV irradiation and NTG treatment Among these mutants, Penicillium sp. KJ-UV29 revealed no morphological changes, yet was superior to the wild strain in the following three points: (1) Penicillium sp. KJ-UV29 produced more erythritol than the wild strain under the same conditions, (2) no foam was produced during cultivation, unlike the wild strain, and (3) the mutant produced a Significantly lower amount of glycerol. Penirillium sp. KJ-UV29 produced as much as 15.1 g/L of erythritol, whereas the wild-type Penirillium sp. KJ81 only produced 11.7 g/L. Penicillium sp. KJ-UV29 only generated 6.1 g/L of glycerol, compared to 19.4 g/L produced by the wild strain. When investigating the optimal culture conditions for erythritol production by the mutant strain Penicillium sp. KJ-UV89, sucrose was identified as the most effective carbon source, and the mutant was even able to produce erythritol in a 70% sucrose-containing medium, although a 30% sucrose medium exhibited the highest productivity. The production of erythritol by Penirillium sp. KJ-UV29 was also significantly increased by the addition of ammonium carbonate, potassium nitrate, and sodium nitrate. Accordingly, under optimal conditions, Penicillium sp. KJ-UV29 produced 45.2 g/L of erythritol in a medium containing 30% sucrose, 0.5% yeast extract, 0.5% (NH$_4$)$_2$C$_2$O$_4$, 0.1% KNO$_3$, 0.1% NaNO$_3$, and 0.01% FeSO$_4$ with 1 vvm aeration and 200 rpm agitation at 37$^{\circ}C$ for 7 days in a 5-L jar fermentor.