Production of Recombinant Trehalose Synthase from Thermus caldophilus GK24

재조합 내열성 트레할로스 합성효소의 생산

  • Choi, Jae-Youl (EnzBank, Inc., Bioventure Center(BVC), Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Cha, Wol-Suk (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Shin, Hyun-Jae (Department of Chemical and Biochemical Engineering, Chosun University)
  • 최재열 (한국생명공학연구원 바이오벤처센터 (주)엔지뱅크) ;
  • 차월석 (조선대학교 생명화학공학과) ;
  • 신현재 (조선대학교 생명화학공학과)
  • Published : 2006.08.30

Abstract

A gene(GeneBank AF 135796) coding for a trehalose synthase from Thermus caldophilus GK24 was cloned into Escherichia coli K12 using five vector systems. The constitutive expression system(pHCETS) which shows the highest trehalose synthase activity from flask culture of recombinant E. coli was selected for the production of trehalose from maltose. For the shake flask culture, the final dry cell weight was 0.9 g/L and the trehalose synthase activity was 25 U/mL. Fed-batch culture of recombinant E. coli harboring plasmid pHCETS which uses the glycerolas a carbon source was performed in jar fermentor: the dry cell weight of 20 g/L and the trehalose synthase activity of 13.7 U/mL were attained in 48 h.

트레할로스 합성효소(trehalose synthase)의 효율적인 생산을 위하여, 5 종류의 plasmid를 형질전환 시킨 재조합 E. coli를 이용하여 균체생산량과 효소발현량을 비교하였다. Trehalose synthase의 활성은 fusion partner를 이용한 system 에서는 활성이 나타나지 않았으며, IPTG 유도 발현 시스템보다 항시적 발현 시스템을 사용하는 E. coli K12/pHCETS에서 가장 높은 활성을 나타내었다. 선별된 재조합 E. coli K12/pHCETS를 사용하여 회분식 및 유가배양을 수행하였으며, 유가식 배양의 경우 균체논도는 20 g/L, 최종 trehalose synthase 활성은 13.7 U/ml을 나타내었다. 이러한 결과는 트레할로스 생산을 위한 trehalose synthase가 재조합 E. coli의 발효에 의해 경제적으로 생산되어질 수 있다는 가능성을 보여 주었다.

Keywords

References

  1. Elbein, A. D. (1974), The metabolism of $\alpha$, $\alpha$-trehalose, Adv. Carbohydr. Chem. Biochem. 30, 227-256 https://doi.org/10.1016/S0065-2318(08)60266-8
  2. Elbein, A. D. (2003), New insights on trehalose: a multifunctional molecule, Glycobiology 13, 17-27 https://doi.org/10.1093/glycob/cwg047
  3. Trevelyan, W. E. (1956), Studies on yeast metabolism. The trehalose content of baker's yeast during anaerobic fermentation, Biochem. J. 62, 177-182 https://doi.org/10.1042/bj0620177b
  4. Nwaka, S. (1998), Molecular biology of trehalose and trehalases in the yeast, Saccharomyces cerevesiae, Prog. Nuc. Acid Res. Mol. Biol. 58, 197-237
  5. De Virgilio, C. (1994), The role of trehalose synthesis for the acquisition of thermotolerance in yeast, Eur. J. Biochem. 219, 179-186 https://doi.org/10.1111/j.1432-1033.1994.tb19928.x
  6. Paiva, C. L. A. and A. D. Panek (1999), Biotechnological applications of the disaccharide trehalose, Biotechnol. Ann. Rev. 2, 293-314
  7. Koh, S., H. -J. Shin, D. S. Lee, and S. Y. Lee (1998), Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus, Biotechnol. Lett. 20, 757-761 https://doi.org/10.1023/A:1005342921339
  8. Nishimoto, T., T. Nakano, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka (1996), Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus, Biosci. Biotech. Biochem. 60, 835-839 https://doi.org/10.1271/bbb.60.835
  9. Nishimoto, T., M. Nakano, T. Nakada, H. Chaen , S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka (1996), Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48, Biosci. Biotech. Biochem. 60, 640-644 https://doi.org/10.1271/bbb.60.640
  10. Lee, J. H., K. H. Lee, C. G. Kim, S. Y. Lee, G. J. Kim, Y. H. Park, and S. O. Chung (2005), Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose, Appl. Microbiol. Biotechnol. 68, 213219 https://doi.org/10.1007/s00253-004-1862-5
  11. Saito, K., H. Yamazaki, Y. Ohnishi, S. Fujimoto, E. Takahashi, and S. Horinouchi (1998), Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Esherichia coli, Appl. Microbiol. Biotechnol. 50, 193-198 https://doi.org/10.1007/s002530051276
  12. Koh, S. (1998), Studies on Trehalose Synthase from Thermus caldophilus GK24, Ph.D. Dissertation, Dept. Agric. Chem., Korea University, Seoul
  13. Koh, S., J. S. Kim, H. -J. Shin, D. H. Lee, J. D. Bae, D. I. Kim, and D. S. Lee (2003), Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase, Carbohydr. Res. 338, 1339-1343 https://doi.org/10.1016/S0008-6215(03)00172-1
  14. Cho, Y. J., S. Koh, D. S. Lee, and H. -J. Shin (2003), Optimization of production of trehalose from maltose using recombinant trehalose synthase from Thermus caldophilus GK24, Korean J. Biotechnol. Bioeng. 18, 8-13
  15. Zhang, X., P. Guo, and G. Jing (2003), A vector with the downstream box of the initiation codon can highly enhance protein expression in Escherichia coli, Biotechnol. Lett. 25, 755-760 https://doi.org/10.1023/A:1023563600459
  16. Terpe, K. (2003), Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol. 60, 523-533 https://doi.org/10.1007/s00253-002-1158-6
  17. Waugh, D. S. (2005), Making the most of affinity tags, TIBTECH. 23, 316-320 https://doi.org/10.1016/j.tibtech.2005.03.012
  18. Poo, H. Y., J. J. Song, S. P. Hong, Y. H. Choi, S. W. Yun, J. -H. Kim, S. C. Lee, S. G. Lee, and M. H. Sung (2002), Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-$\alpha$, Biotechnol. Lett. 24, 1185-1189 https://doi.org/10.1023/A:1016107230825