• Title/Summary/Keyword: Jamming mechanism

Search Result 17, Processing Time 0.02 seconds

Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator (가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석)

  • Lee, Jeongsu;Cho, Youngjun;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

Optimality Investigation of Bending Stiffness According to Particle Size Distribution (입자 크기의 구성 비율에 따른 휨강성 최적화 가능성의 탐구)

  • Song, Eun-Jeong;Lee, Young-Min;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • As an interpretation of existing jamming effects, the main variables affecting the increase in stiffness due to jamming are known as system density, jamming density, pressure, and particulate temperature. The main variable, jamming density, is closely related to the distribution of particle size and contact properties such as particle shape and friction. However, the complexity of these variables makes it difficult to fully understand the mechanism of the jamming effect. In this paper, we focus on the jamming effects of particles that have more elastic properties than particles such as sand and coffee powder, which are commonly used as constituent particles of existing jamming, in order to reduce complicated factors such as temperature and concentrate on jamming effects based on elastic characteristics of particles. It was experimentally explored the possibility of increasing stiffness by mixing particles of different sizes rather than simply increasing the bending stiffness by controlling the particle size. Through simulations and experiments, we found a case where the stiffness of each particle size distribution is larger than the stiffness of each particle size.

A Basic Study on the Jamming Mechanisms and Characteristics against GPS/GNSS Based on Navigation Warfare

  • Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • It has been recognized that the risk from the vulnerability of GPS can lead to the extreme damage in the infrastructure of the civil and military in recent years. As an example, the intentional interference to GPS signal, named GPS jamming, was really performed to misguide GPS guided weapons during Iraq war in 2003, and the fact has also followed by the serious issues on GPS in civilian community. In the modernized military society, the navigation warfare(NAVWAR) based on the GPS jamming has been emerged and introduced as a military operation. The intentional interference to the future global navigation satellite system(GNSS) involving GPS must be also an important issue to civilian users in near future. This study is focused on the fundamental research prior to the research on "Potential principle of NAVWAR" under NAVWAR of the future warfare. In this paper, we would study on the investigation of NAVWAR based on electronic warfare(EW) and analyze characteristics of the jamming against GNSS's receivers. Then the general mechanism on GNSS jamming is proposed.

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

A Code Tracking Circuit Using a Linear Clipper-Gaussian Filter As a Countermeasure against Follow Jamming in FHSS Systems (FHSS 시스템에서 추적 재머에 대항하는 선형 제한-가우시안 필터를 이용한 코드 추적 회로)

  • Koh, Dong-Hwan;Kim, Young-Je;Kim, Whan-Woo;Eun, Chang-Soo;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.152-161
    • /
    • 2009
  • As follow jamming signals in a FHSS system cause malfuctioning in the code tracking circuits using early-late gates, we need a code tracking circuit that is robust against the follow jamming signals. In this paper, we propose a code tracking circuit using a linear clipper-Gaussian filter algorithm to remedy the malfunctioning due to the follow jamming signals in FHSS systems. We investigate the mechanism of the malfunctioning of the code tracking circuit and verify that the proposed linear clipper-Gaussian filter metigates the problem through mathematical analysis and computer simulations.

Laser-based Jamming of a Pulse Modulated Infrared Seeker (레이저빔을 이용한 펄스변조 적외선탐색기 기만)

  • Kim, Sungjae;Jeong, Chunsik;Shin, Yongsan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • Laser beam is directional and small in divergence angle so that it is well qualified to deliver high intensity infrared energy into a coming MANPADS threat for aircraft survivability. The threat will be deceived and loose tracking of a target when it is exposed to the laser beam modulated relevant to the track mechanism of the threat. The laser beam goes through scattering inside the seeker of the threat and reach the detector in a stray light form, which is a critical phenomenon enabling jamming of the seeker. The mechanism of the laser beam based jamming against a pulse modulated infrared seeker is shown. Simulations are carried out to support the understanding of how the jam technique works.

The Simulation and Experiment of Flexible Media using Dynamic Elastics (Dynamic Elastica 이론을 통한 유연매체의 거동해석 및 실험)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.569-572
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as automated teller machines(ATM) and printers etc., the media must transit an open space. In the paper feeding mechanism, it is important to feed the sheet without jamming under any conditions. To avoid sheet jamming, first we need to predict the behavior of the sheet exactly. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The analysis has to include aerodynamic effect for more exact behavior analysis. For verification of the numerical simulation, the experiments were performed using high-speed camera and feeding mechanism. The experimental results show good agreement with the numerical simulations.

  • PDF

Performance of an Efficient Backoff Retransmission Algorithm with a Proactive Jamming Scheme for Realtime transmission in Wireless LAN (재밍 기반의 재전송 방식을 사용한 무선 LAN에서의 효율적인 실시간 트래픽 전송 방안의 성능 분석)

  • Koo Do-Jung;Yoon Chong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.98-106
    • /
    • 2006
  • In order to provide a realtime transmission over a wireless LAM, we here present a new jamming based retransmission mechanism. In a legacy wireless LAN system, all stations use the binary exponential backoff algorithm to avoid collisions among frames. It is well known that the backoff algorithm causes more collisions as the numbers of active stations increases. This makes transmission of real time traffic hard. In the proposed scheme, when each station senses collisions, it promptly allows to send a jamming signal during a unique jamming window period which is determined by its own channel access count database(CACDB). This jamming windows is chosen not to be overlapped each other by using of CACDB, and thus channel access of another station is prevented. Hereafter the station gets the ownership of the medium when the wireless medium becomes idle after sending the jamming signal and sensing carrier, and then sends frame in medium. In our proposal, repeating collisions is never happened. We here assume that real time traffic use a frame of fixed length in order to make the time for receiving its ACK frame same. Comparing the proposed jamming-based retransmission scheme with the the 802.11 and 802.11e MAC by simulation. one can find that the proposed scheme have advantages in terms of delay, average backoff time, and average number of collisions per frame. One can find that the proposed scheme might be practically applicable to several applications of realtime traffic transmission in wireless LAN systems.

Measurement-based Channel Hopping Scheme against Jamming Attacks in IEEE 802.11 Wireless Networks (IEEE 802.11 무선랜 재밍 환경에서의 측정 기반 채널 도약 기법)

  • Jeong, Seung-Myeong;Jeung, Jae-Min;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.205-213
    • /
    • 2012
  • In this paper, we propose a new channel hopping scheme based on IEEE 802.11h as a good countermeasure against jamming attacks in IEEE 802.11 wireless networks. 802.11h Dynamic Frequency Selection (DFS) is a mechanism which enables hopping to a best channel with full channel measurement, not a randomly chosen channel, when the current link quality degradation occurs due to interferers such as military radars. However, under jammer attacks, this needs a time for full channel measurement before a new channel hopping and due to link disconnection during the time network performance degradation is inevitable. In contrast, our proposed schemes make an immediate response right after a jammer detection since every device is aware of next hopping channel in advance. To do this, a next hopping channel is announced by Beacon frames and the channel is selected by full channel measurement within Beacon intervals. Simulation results show that proposed scheme minimizes throughput degradation and keeps the advantages of DFS.

A Device Authentication Mechanism Reducing Performance Cost in Mobile P2P Networks

  • Jeong, Yoon-Su;Kim, Yong-Tae;Shin, Seung-Soo;Lee, Sang-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.923-948
    • /
    • 2013
  • The main concern in mobile peer-to-peer (P2P) networks is security because jamming or eavesdropping on a wireless link is much easier than on a wired one and such damage can be incurred without physical access or contact. In particular, authentication has increasingly become a requirement in mobile P2P environments. This paper presents a new mutual authentication mechanism which requires less storage space and maintains a high level of security in mobile P2P networks. The proposed mechanism improves efficiency by avoiding the use of centralized entities and is designed to be agile in terms of both reliability and low-cost implementation. The mechanism suggested in the simulation evaluates the function costs occurring in authentication between the devices under mobile P2P network environment comparing to existing method in terms of basic operation costs, traffic costs, communications costs, storage costs and scalability. The simulation results show that the proposed mechanism provides high authentication with low cryptography processing overhead.