• Title/Summary/Keyword: Jamming Effect

Search Result 83, Processing Time 0.026 seconds

Implementation and Test of Simulator for Analyzing Effect of GNSS Jamming (GNSS 전파교란 영향분석 시뮬레이터 구현 및 시험)

  • Joo, Inone;Sin, Cheonsig
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • As a dependency on Global Navigation Satellite System (GNSS) becomes increase in various applications, its reliability has been very important. However, in South Korea, Global Positioning System (GPS) jamming incident happened four times since 2010. GNSS signal is so weak that it is highly susceptible to all types of the jamming. GNSS jamming can cause serious damage in the safety-critical applications based on the GNSS. In this paper, we present the GNSS jamming signal propagation prediction simulator based on ITU-R P.1546 model. This simulator is developed for preventing or reducing the damage from the GNSS jamming attack by predicting the jamming propagation strength based on the geographical information in Korean peninsula.

The Error Performance of PSK Satellite Communication System with a Soft Limiter Type Transponder in Jamming Environments (소프트리미터형 중계기를 장치한 PSK 위성통신 시스템의 Jamming 환경하에서의 오율특성)

  • 강영흥;조성언;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1084-1094
    • /
    • 1991
  • Upon introducing satellite communication system to korea, one of the important problems to copy with is the effect from the probable intentional interference i. e. jamming. In this paper, we have considered the M any PSK signal and the soft limiter type, which contains hard limiter, nonhnear satellite transponder in environments of uplink tone or noise jamming plus Gaussian noise and downlink Gaussian noise. Using the derived error rate equation, we have evaluated numerically the error performance of BPSK and QPSK system, and shown in figures in terms of upink and downink earner to jamming rater(CJR) and limiting level. From the results we have known that tone jamming effect on the error performance in BPSK and QPSK signals in nonlinear satelhie shnnel become less with increasing the uplink CNR and with decreasing the liniting level. And in a tone jamming, the limiting level affects hardly on the error performance of both BPSK and QPSK signals. When limiting leveri is zero, BPSK and QPSK signals show the best error rate performance.

  • PDF

A Study on the effect of high-performance frequency hopping radio system to next-generation aircraft and improvement Anti-jamming communication (고성능 주파수 도약 공지통신 무전기의 차세대 항공기 적용과 항공기 항재밍 통신장비 개량에 따른 효과 연구)

  • Lee, Kwangyull;Yong, Taeho;Ahn, Seungbeom;An, Kyeongsoo;Jang, Indong;Han, Chulhee
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • In wartime conditions, the communication system of military aircraft is exposed to jamming, and it is necessary to mount communication equipment with high anti-jamming performance in order to perform air operations smoothly even in an environment where jamming attempts are made. In this paper, we check in detail the jamming and anti-jamming technology that can be applied to wireless communication, and the data disclosed on the difference in specifications of the next-generation anti-jamming radio with frequency hopping method and the improvement of anti-jamming performance according to these changes. It was briefly analyzed within the scope. In addition, the points to be considered when designing a new domestic aircraft and the possibility of installing the next-generation anti-jamming communication equipment on the currently operating aircraft were confirmed, and the tactical usefulness of improving the anti-jamming capability of the next-generation anti-jamming communication equipment was confirmed.

A Model to Evaluate Jammer Influences on Ranging Measurements

  • Yoo, Won Jae;Kim, Heyone;Hwang, Dong-Hwan;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • Recently, number of intentional jamming has increased significantly. If GNSS jammers are activated, user receivers can be largely influenced due to the vulnerable characteristic of the GNSS (Global Navigation Satellite System) signal. When the reception power of the jamming signal and that of the navigation signal are similar, the C/A (Coarse Acquisition) chip delay error can occur in the delay locked loop. To evaluate the jamming effect, a new measurement model is formulated based on previous research works. The new model explains how the jamming to signal ratio affects the ranging measurement accuracy and other parameters. To evaluate the validity of the newly formulated model, the experiment results of the previous research works under actual jamming environment are utilized. By evaluating the consistency of the carrier-to-noise ratio (C/N0) and the position error with the actual jamming environment, the validity of the newly formulated model is verified.

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

Jammer Identification Technique based on a Template Matching Method

  • Jin, Mi Hyun;Yeo, Sang-Rae;Choi, Heon Ho;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.45-51
    • /
    • 2014
  • GNSS has the disadvantage of being vulnerable to jamming, and thus, the necessity of jamming countermeasure techniques has gradually increased. Jamming countermeasure techniques can be divided into an anti-jamming technique and a jammer localization technique. Depending on the type of a jammer, applicable techniques and performance vary significantly. Using an appropriate jamming countermeasure technique, the effect of jamming on a GNSS receiver can be attenuated, and prompt action is enabled when estimating the location of a jammer. However, if an inappropriate jamming countermeasure technique is used, a GNSS receiver may not operate in the worst case. Therefore, jammer identification is a technique that is essential for proper action. In this study, a technique that identifies a jammer based on template matching was proposed. For template matching, analysis of a received jamming signal is required; and the signal analysis was performed using a spectral correlation function. Based on a simulation, it was shown that the proposed identification of jamming signals was possible at various JNR.

Radar Countermeasure and Effect Analysis for the Pull-Off Deceptive Jamming Signal (Pull-Off 기만 재밍 신호에 대한 레이다 대응기법 및 효과 분석)

  • Jang, Sunghoon;Kim, Seonjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • This paper presents the radar counter jamming algorithm and ground far-field test results for the pull-off deceptive jamming signals like RGPO(Range Gate Pull Off) and VGPO(Velocity Gate Pull Off). We designed the radar counter jamming algorithm according to the characteristics of the deceptive jamming signals. This algorithm is validated by simulation before ground far-field test. The existing X-band AESA radar demonstrator was used to test the proposed algorithm. The proposed algorithm was applied to the radar processor software. The deceptive jamming signals generated using the commercial jamming signal generator. We performed the repeated ground far-field test with the test scenario. Test results show that the proposed counter deceptive jamming algorithm works in the real radar system.

A hidden anti-jamming method based on deep reinforcement learning

  • Wang, Yifan;Liu, Xin;Wang, Mei;Yu, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3444-3457
    • /
    • 2021
  • In the field of anti-jamming based on dynamic spectrum, most methods try to improve the ability to avoid jamming and seldom consider whether the jammer would perceive the user's signal. Although these existing methods work in some anti-jamming scenarios, their long-term performance may be depressed when intelligent jammers can learn user's waveform or decision information from user's historical activities. Hence, we proposed a hidden anti-jamming method to address this problem by reducing the jammer's sense probability. In the proposed method, the action correlation between the user and the jammer is used to evaluate the hiding effect of the user's actions. And a deep reinforcement learning framework, including specific action correlation calculation and iteration learning algorithm, is designed to maximize the hiding and communication performance of the user synchronously. The simulation result shows that the algorithm proposed reduces the jammer's sense probability significantly and improves the user's anti-jamming performance slightly compared to the existing algorithms based on jamming avoidance.

A Novel Scheme to Mitigate a GPS L1 C/A Signal Repeat-back Jamming Effect, According to a Code Tracking Bias Estimation, Using Combined Pseudo-random Noise Signals (통합 의사잡음신호 기반 부호추적편이 추정에 따른 GPS L1 C/A 신호의 재방송재밍 영향 완화 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.869-875
    • /
    • 2016
  • In this paper, a novel scheme with which to mitigate a repeat-back jamming effect is proposed for the GPS L1 coarse/acquisition signal. The proposed scheme estimates the code tracking bias caused by repeat-back jamming signals using a Combined Pseudo-random noise signal. It then mitigates the repeat-back jamming effect by subtracting the estimated code timing on a normal correlation channel from the estimated value. Through a Monte-Carlo simulation, the proposed scheme can diminish the running average of code tracking bias to less than 10% of the bias using the conventional scheme.

Performance Evaluation of a Vector-Tracking-Loop for GNSS Jamming Effect Mitigation Under Static and Dynamic Conditions

  • Cheon, Wang-Seong;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.113-125
    • /
    • 2018
  • Since the global positioning system receivers on the surface of the Earth use satellite signals sent from a remote distance and the intensity of received signals is weak, they are vulnerable to jamming. This paper implements a vector-tracking loop (VTL)-based global navigation satellite system (GNSS) receiver algorithm as an anti-jamming technique and compares the performance of VTL-based receivers with that of scalar-tracking loop (STL) that is used in general GNSS receivers at various jamming environments and a vehicle's dynamics. The simulation results shows that VTL is more robust against jamming than STL in all operating environments.