• Title/Summary/Keyword: Jacobi operator

Search Result 61, Processing Time 0.022 seconds

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

KILLING STRUCTURE JACOBI OPERATOR OF A REAL HYPERSURFACE IN A COMPLEX PROJECTIVE SPACE

  • Perez, Juan de Dios
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.473-486
    • /
    • 2021
  • We prove non-existence of real hypersurfaces with Killing structure Jacobi operator in complex projective spaces. We also classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Killing with respect to the k-th generalized Tanaka-Webster connection.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Kim, Soo-Jin
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.747-761
    • /
    • 2010
  • It is known that there are no real hypersurfaces with parallel structure Jacobi operator $R_{\xi}$ (cf.[16], [17]). In this paper we investigate real hypersurfaces in a nonflat complex space form using some conditions of the structure Jacobi operator $R_{\xi}$ which are weaker than ${\nabla}R_{\xi}$ = 0. Under further condition $S\phi={\phi}S$ for the Ricci tensor S we characterize Hopf hypersurfaces in a complex space form.

Hopf Hypersurfaces in Complex Two-plane Grassmannians with Generalized Tanaka-Webster Reeb-parallel Structure Jacobi Operator

  • Kim, Byung Hak;Lee, Hyunjin;Pak, Eunmi
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.525-535
    • /
    • 2019
  • In relation to the generalized Tanaka-Webster connection, we consider a new notion of parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians and prove the non-existence of real hypersurfaces in $G_2({\mathbb{C}}^{m+2})$ with generalized Tanaka-Webster parallel structure Jacobi operator.

GENERALIZED KILLING STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS

  • Lee, Hyunjin;Suh, Young Jin;Woo, Changhwa
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.255-278
    • /
    • 2022
  • In this paper, first we introduce a new notion of generalized Killing structure Jacobi operator for a real hypersurface M in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um). Next we prove that there does not exist a Hopf real hypersurface in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um) with generalized Killing structure Jacobi operator.

SEMI-SYMMETRIC STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC

  • Imsoon Jeong;Gyu Jong Kim;Changhwa Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.849-861
    • /
    • 2023
  • In this paper, we introduce the notion of semi-symmetric structure Jacobi operator for Hopf real hypersufaces in the complex quadric Qm = SOm+2/SOmSO2. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric Qm = SOm+2/SOmSO2 with semi-symmetric structure Jacobi operator. As a corollary, we also get a non-existence property of Hopf real hypersurfaces in the complex quadric Qm with either symmetric (parallel), or recurrent structure Jacobi operator.

REAL HYPERSURFACES OF THE JACOBI OPERATOR WITH RESPECT TO THE STRUCTURE VECTOR FIELD IN A COMPLEX SPACE FORM

  • AHN, SEONG-SOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.279-294
    • /
    • 2005
  • We study a real hypersurface M satisfying $L_{\xi}S=0\;and\;R_{\xi}S=SR_{\xi}$ in a complex hyperbolic space $H_n\mathbb{C}$, where S is the Ricci tensor of type (1,1) on M, $L_{\xi}\;and\;R_{\xi}$ denotes the operator of the Lie derivative and the Jacobi operator with respect to the structure vector field e respectively.