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ON THE STRUCTURE JACOBI OPERATOR AND
RICCI TENSOR OF REAL HYPERSURFACES IN

NONFLAT COMPLEX SPACE FORMS

Soo Jin Kim

Abstract. It is known that there are no real hypersurfaces with
parallel structure Jacobi operator Rξ (cf.[16], [17]). In this paper
we investigate real hypersurfaces in a nonflat complex space form
using some conditions of the structure Jacobi operator Rξ which
are weaker than ∇Rξ = 0. Under further condition Sφ = φS for
the Ricci tensor S we characterize Hopf hypersurfaces in a complex
space form.

I. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic
sectional curvature 4c is called a complex space form, which is denoted
by Mn (c). As is well-known, a complete and simply connected complex
space form is complex analytically isometric to a complex projective
space PnC, a complex Euclidean space Cn or a complex hyperbolic space
HnC, according as c > 0, c = 0 or c < 0.

In this paper we consider a real hypersurface M in a complex space
form Mn (c) , c 6= 0. Then M has an almost contact metric structure
(φ, g, ξ, η) induced from the Kähler metric and complex structure J on
Mn (c). The structure vector field ξ is said to be principal if Aξ = αξ
is satisfied, where A is the shape operator of M and α = η(Aξ). In this
case, it is well known that α is a locally constant ([13]) and that M is
called a Hopf hypersurface.

Typical examples of Hopf hypersurfaces in PnC are homogeneous
ones, namely those real hypersurfaces are given as orbits under subgroup
of the projective unitary group PU(n + 1). Takagi [18], [19] completely
classified such hypersurfaces as six model spaces which are said to be of
type A1, A2, B, C, D and E. Also Berndt ([1]) showed that all Hopf real
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hypersurfaces with constant principal curvature in a complex hyperbolic
space HnC are realized as the tubes of constant radius over certain
submanifolds. Nowadays in HnC they are said to be of type A0, A1, A2

and B. In 2007, Berndt and Tamaru [2] classified all homogeneous real
hypersurfaces in HnC. Real hypersurfaces of each type in Mn (c), c 6= 0
have been described in detail by Niebergall and Ryan ([15]).

On the other hand, the structure Jacobi operator Rξ = R (·, ξ) ξ for
the Riemannian curvature operator R has a fundamental role in contact
geometry. Cho and Ki started the study on real hypersurfaces in a
complex space form by using the operator Rξ in [3], [4] and [5]. It is
well known that there are no real hypersurfaces with parallel structure
Jacobi operator ∇Rξ = 0 in Mn (c), c 6= 0 ([16], [17]).

Motivated by results mentioned above, it is natural to investigate real
hypersurfaces in a complex space form by using some conditions (on the
derivative of Rξ) which are weaker than ∇Rξ = 0. From this point
of views, some works have studied real hypersurfaces with ∇ξRξ = 0
or ∇φ∇ξξRξ = 0, and given some results on the classification of real
hypersurfaces in a complex space form ([6]∼[12], [14]). Two of them we
introduce the following without proof.

Theorem 1.1 (Ki, Kurihara, Nagai and Takagi [9]). Let M be
a real hypersurface in a complex space form Mn (c), c 6= 0 whose Ricci
tensor commutes with Rξ. Then M satisfies ∇ξRξ = 0 if and if only M
is locally congruent to one of the following:

(1) In case that Mn (c) = PnC with η (Aξ) 6= 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and

r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC (1 ≤ k ≤ n− 2),

where 0 < r < π/2 and r 6= π/4.
(2) In case Mn (c) = HnC,

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic

hyperplane Hn−1C,
(A2) a tube over a totally geodesic HnC (1 ≤ n ≤ n− 2).

Theorem 1.2 (Ki and Kurihara [7]). Let M be a real hypersurface
in a nonflat complex space form which satisfies ∇φ∇ξξRξ = 0. M holds
∇ξRξ = 0 if and only if M is locally congruent to one of (1) and (2)
stated in Theorem 1.1.
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Let us denote the Ricci tensor of type (1,1) by S. If we pay a partic-
ular attention to the fact that for each Hopf hypersurface M in Mn (c),
c 6= 0, then Sξ = g(Sξ, ξ)ξ is satisfied. If Sφ = φS holds on real hy-
persurfaces in Mn (c), then we have Sξ = g(Sξ, ξ)ξ. The classification
of such real hypersurfaces is still open problem. Recently we have the
following:

Theorem 1.3 (Kim and Ki [14]). Let M be a real hypersurface in
Mn (c), c 6= 0, which satisfies ∇ξRξ = 0 and at the same time φS = Sφ.
Then M is a Hopf hypersurface. Further, M is locally congruent to one
of (1) and (2) stated in Theorem 1.1.

Theorem 1.4 (Ki and Nagai [11]). Let M be a real hypersur-
face in a complex projective space PnC which satisfies RξS = SRξ and
∇φ∇ξξS = 0. If g(Sξ, ξ) =const., then M is a Hopf hypersurface.

In this paper, we investigate real hypersurface satisfying φS = Sφ
and at the same time ∇φ∇ξξRξ = 0 in a complex space form. The main
purpose of the present paper is to establish Main Theorem stated in
section 5.

All manifolds in the present paper are assumed to be connected and
of C∞ and real hypersurfaces supposed to be orientable.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form
Mn (c) with parallel almost complex structure J , and constant holomor-
phic sectional curvature 4c and N be a unit normal vector field on M .
By ∇̃ we denote the Levi-Civita connection with respect to the Fubini-
study metric g̃ of Mn (c). Then the Gauss and Weingraten formulas are
given respectively by

∇̃XY = ∇XY + g (AX,Y ) N, ∇̃XN = −AX

for any vector fields X and Y on M , where ∇ and g denote the Rie-
mannian connection and the Riemannian metric tensor induced from g̃
respectively, and A denotes the shape operator in the direction of N .

For any vector field X tangent to M , we put

JX = φX + η (X) N, JN = −ξ.

We call ξ the structure vector field and its flow also denoted by the
same ξ. Then we may see that the aggregate (φ, ξ, η, g) is an almost
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contact metric structure on M . From the fact ∇̃J = 0, and by using the
Gauss and Weingarten formulas, we have

(2.1) ∇Xξ = φAX,

(2.2) (∇Xφ) Y = η (Y ) AX − g (AX, Y ) ξ.

Since we consider that the ambient manifold is of constant holomor-
phic sectional curvature 4c, we have the following Gauss and Codazzi
equations respectively.

(2.3) R (X, Y ) Z = c {g (Y,Z)X − g(X, Z)Y + g(φY,Z)φX

− g (φX, Z) φY − 2g (φX, Y ) φZ}
+ g (AY, Z) AX − g (AX,Z) AY,

(2.4) (∇XA) Y − (∇Y A) X = c {η (X) φY − η (Y ) φX − 2g (φX, Y ) ξ}
for any tangent vector fields X, Y and Z on M, where R denote the
Riemannian curvature tensor of M .

Now let us denote by α = η (Aξ), β = η
(
A2ξ

)
and h = TrA, and ∇f

the gradient vector field of a function f defined on M .
If we put U = ∇ξξ, then U is orthogonal to ξ. Thus, it is, using (2.1),

seen that

(2.5) φU = −Aξ + αξ,

which leads to g (U,U) = β − α2. We easily see that ξ is a principal
curvature vector field, that is Aξ = αξ, if and only if β−α2 = 0. In this
case, M is called a Hopf hypersurface in Mn (c). If we put

(2.6) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. Then we get U = µφW ,
which tells us that W is also orthogonal to U . Further, we have

(2.7) µ2 = β − α2.

Using (2.1) and (2.6), we see that

(2.8) µg (∇XW, ξ) = g (AU,X) ,

(2.9) g (∇Xξ, U) = µg (AW,X)

for any vector field X on M .
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Differentiating (2.5) covariantly along M and making use of (2.1) and
(2.2), we find

(2.10) (∇XA) ξ = −φ∇XU + g(AU +∇α, X)ξ −AφAX + αφAX,

which enables us to obtain

(2.11) (∇ξA) ξ = 2AU +∇α,

where we have used (2.4). From (2.1) and (2.10), we verify that

(2.12) ∇ξU = 3φAU + αAξ − βξ + φ∇α.

From the Gauss equation (2.3) the structure Jacobi operator Rξ is
given by

(2.13) RξX = R (X, ξ) ξ = c {X − η (X) ξ}+ αAX − η (AX)Aξ

for any vector field X on M .
We set Ω = {p ∈ M |µ (p) 6= 0}, and suppose that Ω 6= ∅, that is ξ is

not principal curvature vector on M. Hereafter, unless otherwise stated,
we continue our discussions on the open set Ω of M.

Differentiating (2.13) covariantly along Ω, we find

(2.14) g ((∇XRξ) Y, Z)

= g(∇X(RξY )−Rξ(∇XY ), Z)
= −c {η (Z) g(∇Xξ, Y ) + η (Y ) g(∇Xξ, Z)}+ (Xα)g(AY, Z)
+αg ((∇XA) Y, Z)− η (AZ) {g ((∇XA)ξ, Y ) + g(AφAX, Y )}
−η (AY ) {g ((∇XA)ξ, Z) + g(AφAX, Z)} .

If we put X = W and Y = ξ in (2.14), then we get

g((∇W Rξ)ξ, Z)

= −cg(φAW,Z) + (Wα)g(Aξ,Z)− η(AZ)g((∇W A)ξ, ξ)
−η(AZ)g(AφAW,Z)− αg(AφAW,Z),

or using (2.11)

(2.15)
g((∇W Rξ)ξ, Z) = −αg(AφAW,Z)− cg(φAW,Z)− g(AU,W )η(AZ).

3. Real hypersurfaces satisfying Sφ = φS

In the following we shall denote the Ricci tensor of type (1,1) by S.
Then it follows from (2.3) that

(3.1) S = c{(2n + 1)I − 3η ⊗ ξ}+ hA−A2,
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where I is an identity map, which implies

(3.2) Sξ = 2c(n− 1)ξ + hAξ −A2ξ.

Now, suppose that Sφ = φS is satisfied on a real hypersurface M of
Mn (c), c 6= 0. Then we have from (3.1) A2φ−φA2 = h(Aφ−φA), which
enables us to obtain φ(A2ξ − hAξ) = 0. Because of properties of the
almost contact metric structure (φ, g, ξ, η), it follows, using this, that

(3.3) A2ξ = hAξ + (β − hα)ξ.

Combining (2.6) to this, we verify that

(3.4) AW = µξ + (h− α)W

and hence

(3.5) A2W = hAW + (β − hα)W

because of µ 6= 0. Differentiating (3.4) covariantly along Ω, we find

(3.6) (∇XA)W +A∇XW = (Xµ)ξ+µ∇Xξ+X(h−α)W +(h−α)∇XW.

If we take an inner product with W in the last equation, then we find

(3.7) g((∇XA)W,W ) = −2g(AU,X) + Xh−Xα

since W is a unit vector field orthogonal to ξ. We also obtain by applying
ξ to (3.6),

µg((∇XA)W, ξ) = (h− 2α)g(AU,X) + µ(Xµ),

where we have used (2.8), which together with the Codazzi equation
(2.4) implies that

(3.8) µ(∇ξA)W = (h− 2α)AU − cU + µ∇µ.

Replacing X by µξ in (3.6) and taking account of (3.8), we get

(3.9) (h− 2α)AU − cU + µ∇µ + µ{A∇ξW − (h− α)∇ξW}
= µ(ξµ)ξ + µ2U + µ(ξh− ξα)W.

By the way, from φU = −µW we see, using (2.2,) that

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.

Putting X = ξ in this and making use of (2.5) and (2.12), we obtain

(3.10) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W.

Substituting this into (3.9), we have

(3.11) 3A2U − 2hAU + A∇α +
1
2
∇β − h∇α + (αh− β − c)U

= 2µ(Wα)ξ + µ(ξh)W − (h− 2α)(ξα)ξ,
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where we have used (2.7). Taking an inner product ξ to this and using
(2.6) and (2.7), we find

(3.12) ξµ = Wα.

From (3.7) and (3.8), it is seen that

(3.13) Wµ = ξh− ξα.

Differentiating (3.3) covariantly and making use of (2.1), we find

(∇XA)Aξ + A(∇XA)ξ + A2φAX − hAφAX

= (Xh)Aξ + h(∇XA)ξ + X(β − hα)ξ + (β − hα)φAX,

which together with the Codazzi equation (2.4) implies that

c{u(Y )η(X)− u(X)η(Y )}+ 2c(h− α)g(φX, Y )− g(A2φAX, Y )

+g(A2φAY, X) + 2hg(φAX, Y )− (β − hα){g(φAY,X)− g(φAX, Y )}
= g(AY, (∇XA)ξ)− g(AX, (∇Y A)ξ) + (Y h)g(Aξ, X)− (Xh)g(Aξ, Y )

+Y (β − hα)η(X)−X(β − hα)η(Y ),
where we have defined a 1-form u by u(X) = g(U,X) for any vector field
X. If we replace X by µW to the both sides of the last equation and
make use of (2.4), (2.11), (3.4), (3.5) and (3.8), then we get

(3.14) (3α− 2h)A2U +2(h2 +β−2hα+ c)AU +(h−α)(β−hα−2c)U

= µA∇µ + (αh− β)∇α− 1
2
(h− α)∇β + µ2∇h− µ(Wh)Aξ

−µW (β − hα)ξ.
Applying by U or W in (3.1), we have respectively

SU = (2n + 1)cU + hAU −A2U,

SW = (2n + 1)cW + (hα− β)W
by virtue of (3.5). If we take an inner product U to Sφ − φS = 0 and
make use of the last two equations, then we obtain

−µSW + (2n + 1)cµW − hφAU + φA2U = 0,

or equivalently (β − hα)µW − hφAU + φA2U = 0. Thus, it follows that

(3.15) A2U = hAU + (β − hα)U.
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4. Real hypersurfaces satisfying Sφ = φS and ∇φURξ = 0

We will continue our arguments on Ω under the assumptions Sφ = φS
and at the same time ∇φ∇ξξRξ = 0. Then the second hypothesis implies
that ∇W Rξ = 0 because of (2.5) and (2.6). So see from (2.15) that

(4.1) αAφAW + cφAW + g(AU,W )ξ = 0.

Since the first assumption implies (3.4). So we obtain g(AW,U) = 0.
Therefore (4.1) reformed as

(4.2) αAφAW + cφAW = 0.

Combining this to (3.4), we see that

(4.3) λ(αAU + cU) = 0.

because of (2.5), where we have put λ = h− α.
We notice here that the following :

Remark 1. α 6= 0 on Ω.

In fact, if not, then we get α = 0. So we verify, using (4.3), that
λ = 0 and hence h = 0 on this subset. Consequently (3.11), (3.14) and
(3.15) are reduced respectively to

3A2U +
1
2
∇β − (β + c)U = 0,

2(β + c)AU =
1
2
A∇β − µ(Wβ)ξ,

A2U = βU

on the subset, where we have used (2.7). Combining these we obtain
4βAU +µ(Wβ)ξ = 0, which together with (2.6) yields Wβ = 0 and thus
AU = 0 on the set because β 6= 0 on Ω. From the equation A2U = βU
we have U = 0, a contradiction. Therefore α 6= 0 is proved on Ω.

Putting X = W in (2.14) and using (4.2) and Remark 1, we find

α(∇W A)X = −(Wα)AX + g(Aξ,X)(∇W A)ξ + g((∇W A)ξ, X)Aξ

− c

α
{w(X)φAW + g(φAW,X)W},

where we have defined a 1-form w by w(X) = g(W,X) for any vector
field X, which connected to (3.4) and (3.8) gives

(4.4) α(∇W A)X = −(Wα)AX − c

α
λ(w(X)U + u(X)W )
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+
1
µ
{(λ− α)AU − 2cU + µ∇µ}g(Aξ, X)

+
1
µ

g((λ− α)AU − 2cU + µ∇µ,X)Aξ.

If we put X = W in (4.4) and take account of (2.7), (3.7) and (3.13),
then we obtain

(4.5)
1
2
α∇β−α2∇h = c(h+α)U−αhAU +α(Wα)AW−α(ξh−ξα)Aξ.

First of all, we shall prove the following lemma, which will be used
later.

Lemma 1. αAU + cU = 0 on Ω.

Proof. We suppose that αAU + cU 6= 0 on Ω, and then we restrict
the arguments on such a place. From (4.3) we then have λ = 0, that is,
h − α = 0. Accordingly (3.4) is reduced to AW = µξ. So (3.14) turns
out to be

(4.6) µ(Wα)Aξ = µA∇µ− αA2U − 2(µ2 + c)AU,

where we have used (2.7) and (3.13). In the same way we see from (4.5)
that

µ∇µ = 2cU − αAU + µ(Wα)ξ
because of (2.7) and Remark 1, which implies

µA∇µ = 2cAU − αA2U + µ(Wα)Aξ.

Thus, (4.6) together with this yields

(4.7) αA2U + µ2AU = 0,

or using (2.7) and (3.15) βAU + αµ2U = 0. From this we have βA2U +
αµ2AU = 0. Hence we have A2U = 0 by virtue of (4.7). So we obtain
AU = 0 and therefore U = 0, a contradiction. This completes the proof.

¥
Using (3.15) and Lemma 1, we have

(4.8) α2(β − hα) = c(hα + c).

By Lemma 1, (4.5) turns out to be

(4.9)
1
2
α2∇β = α2∇h + c(α + 2h)U + α(Wα)AW − α(ξh− ξα)Aξ.

Applying (4.9) by W and making use of (2.7) and (3.13,) we find

(4.10) Wβ = α(Wh) + h(Wα).
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Because of Lemma 1 and Remark 1, we can write (4.4) as

(4.11) α(∇W A)X = −(Wα)AX − cλ

α
{u(X)W + w(X)U}

+g(∇µ− ch

αµ
U,X)Aξ + g(Aξ,X)(∇µ− ch

αµ
U).

By putting X = U in this, and making use of Lemma 1, we obtain

(4.12) α(∇W A)U = (Uµ)Aξ +
c

α
((Wα)U − λµ2W − hµAξ).

On the other hand, if we take an inner product U to (3.6) and make
use of (2.4) and Lemma 1, then we obtain

(αλ + c)g(∇XW,U) = αg((∇W A)X, U) + cαµη(X)− αµ2g(AW,X),

which together with (4.12) implies that

(4.13) (αλ + c)g(∇XW,U) =
c

α
g((Wα)U − λµ2W − µhAξ,X)

+(Uµ)g(Aξ, X) + αµη(X)− αµ2g(AW,X).
Putting X = U in this and using (3.4), we have

(4.14) (αλ + c)g(∇UW,U) =
c

α
µ2(Wα).

Now, if we differentiate αAU + cU = 0 covariantly, and use itself
again, then we get

(4.15) − c

α
(Xα)U + α(∇XA)U + αA∇XU + c∇XU = 0,

which together with the Codazzi equation (2.4) and (2.5) yields
c

α
{(Y α)u(X)− (Xα)u(Y )}+ cαµ{η(X)w(Y )− η(Y )w(X)}

+α{g(A∇XU, Y )− g(A∇Y U,X)}+ cdu(X, Y ) = 0,
where du is the exterior derivative of a 1-form u given by

du(X, Y ) = X(u(Y ))− Y (u(X))− u([X, Y ]).

Replacing X by ξ in the last equation and taking account of (2.6)
and (2.9), we obtain

αµg(W,∇XU) = − c

α
(ξα)u(X) + cαµw(X) + µ(α2 + c)g(AW,X)

+g(αA∇ξU + c∇ξU,X).
If we put X = U in this and make use of αAU + cU = 0, then we

have α2g(∇UW,U) = cµ(ξα), which together with (4.14) implies that

(4.16) αµ(Wα) = (αλ + c)ξα.
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Differentiating (4.8) along Ω and using itself again, we find

(4.17) α2∇β = −2c

α
(hα + c)∇α + (α2 + c)(α∇h + h∇α).

If we take an inner product W to this and make use of (4.10), then
we obtain

(4.18) α(Wβ) = 2(hα + c)Wα.

Finally we prove

Lemma 2. ξα = 0, ξh = 0, ξβ = 0 and Wα = 0 on Ω.

Proof. It is verify, using (2.7), that we have from (3.13) 1
2Wβ =

µ(ξλ) + α(Wα), which together with (4.18) implies that (αλ + c)Wα =
µα(ξλ), where we have used λ = h− α. Thus, it follows that

(4.19) (αλ + c)Wα = µα(ξh)− µα(ξα).

On the other hand, applying (4.17) by ξ we obtain,

(4.20) α2(ξβ) = −2c

α
(hα + c)ξα + (α2 + c)(αξh + hξα).

By the way, (2.7) and (3.12) implies that α(ξβ) = 2µα(Wα) +
2α2(ξα), which connected to (4.16) gives α(ξβ) = 2(αh + c)ξα. Substi-
tuting the last equation into (4.20), we find

(4.21) (α2 + c){α2(ξh)− (hα + 2c)ξα} = 0.

Let Ω0 be the set of points such that (ξα)p 6= 0, p ∈ Ω and suppose
that Ω0 be nonempty. Then we have on Ω0 α2(ξh)− (hα + 2c)ξα = 0.

This, together with (4.19) implies that α(αλ+c)Wα = µ(αλ+2c)ξα.
Accordingly we have from this and (4.16) on Ω0.

(αλ + c)2 = µ2(αλ + 2c).

Since we have α2µ2 = α3λ + c(αλ + α2 + c) by virtue of (4.8), the
last relationship reformed as (αλ + c)(αλ + α2 + 2c) = 0 on Ω0. If
αλ+ c = 0, then αh+ c = α2. Thus, (4.8) implies β−hα = c and hence
β = α2 i.e µ = 0, it cannot occur on Ω, a contradiction. Therefore we
have αλ + α2 + 2c = 0 on Ω0. So we have αh + 2c = 0 and therefore
α(Wh) + h(Wα) = 0 on Ω0, which together with (4.10) yields Wβ = 0.
Thus, (4.18) gives Wα = 0 and hence ξα = 0 on Ω0 by virtue of (4.16).
Thus ξα = 0 every where on Ω is proved. Therefore we have Wα = 0,
ξh = 0 and ξβ = 0 because of (4.16), (4.19) and (4.20) respectively.
This completes the proof of Lemma2. ¥
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5. Main theorem

We will continue our arguments on Ω under the hypotheses as those
stated in section 4. We prove

Theorem. Let M be a real hypersurface with almost contact metric
structure (φ, g, ξ, η) in a complex space form which satisfies φS = Sφ
and at the same time ∇φ∇ξξRξ = 0. Then M is a Hopf hypersurface,
where S denotes the Ricci tensor of M .

Proof. Because of Lemma 2. we can write (4.9) as

(5.1)
1
2
α∇β = α2∇h + c(α + 2h)U,

which together with (4.17) implies that

(5.2) (chα− hα3 + 2c2)∇α + α2(α2 − c)∇h = −2cα2(2h + α)U.

This is rewritten as

(chα− hα3 + 2c2)(Y α) + α2(α2 − c)(Y h) + 2cα2(2h + α)u(Y ) = 0

for any vector field Y . Differentiating this with respect to a vector field
X, and taking the skew-symmetric parts for X and Y , we eventually
have

3(c−α2){(Xh)(Y α)−(Y h)(Xα)}+2c(4h+3α){(Xα)u(Y )−(Y α)u(X)}
+4cα{(Xh)u(Y )−(Y h)u(X)}+2cα(2h+α)du(X, Y ) = 0.

Putting X = ξ in this and taking account of Remark 1 and Lemma
2, we find

(5.3) (2h + α)du(ξ, X) = 0.

Now, suppose that Ω1 = {p ∈ Ω|du(ξ,X)p 6= 0} and Ω1 6= ∅. Then
we have 2h+α = 0 and hence hα = −1

2α2 on Ω1. Therefore (5.2) implies
∇α = 0 and hence ∇h = 0 on Ω1. Accordingly ∇β = 0 because of (4.17)
and Remark 1. Using these facts, (3.11) turns out to be

3A2U − 2hAU + (αh− β − c)U = 0,

which together with Lemma 1 and (4.8) gives α2 = hα− 2c and conse-
quently 3α2 = −4c because we have already hα = −1

2α2 on Ω1. Hence
we see that c < 0 on Ω1. By the way, (4.8) implies 2β + α2 = 2c on Ω1.
It is contradictory by virtue of c < 0. Therefore we have Ω1 = ∅ and
thus du(ξ, X) = 0 on Ω because of (5.3). From this fact, we have

g(∇ξU,X) + g(∇Xξ, U) = 0.
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which together with (2.9) and (2.12) implies that

3φAU + αAξ − βξ + φ∇α + µAW = 0

or, using (2.6), (3.4) and Lemma 1, (3c + hα)µW + φ∇α = 0. Thus, it
follows that

(5.4) α∇α = (αh + 3c)U.

From this and (5.2) we verify that

(5.5) α3(c− α2)∇h = (2cα4 − h2α4 + chα3 + cα2h2 − 5c2αh + 6c3)U.

On the other hand, we have from (3.11)

3A2U − 2hAU + A∇α +
1
2
∇β − h∇α + (αh− β − c)U = 0

by virtue of Lemma 2, which together with (5.1), (5.4) and Lemma 1
implies that

(5.6) α2∇h = (αh2 +
c2

α
+ ch)U.

Combining this to (5.5), we obtain

(5.7) α4 + hα3 +
c

2
α2 + 2chα +

5
2
c2 = 0.

Differentiation this gives

(4α3 + 3α3h + cα + 2ch)α∇α + (α2 + 2c)α2∇h = 0.

which together with (5.4), (5.6) and (5.7) yields

12α4 + 9α2(hα)− 4(αh)2 − 2c(hα) + 4cα2 + 2c2 = 0.

If we combine this to (5.7), then we get

4(α2 +
c

2
α2 +

5
2
c2)2 + (9α2 − 2c)(α2 + 2c)(α4 +

c

2
α2 +

5
2
c)

= (α2 + 2c)2(12α4 + 4cα2 + 2c2),
or equivalently 2α8 + 55cα6 + · · · + 7c4 = 0. Thus, α is a root of the
algebraic equation with constant coefficient. So we verify that α is a
constant on Ω. Accordingly we have αh + 3c = 0 because of (5.4)
and hence h = constant. with the aid of Remark 1. Consequently we
see, using (5.6), that (αh)2 + c(αh) + c2 = 0 and hence c = 0 since
αh + 3c = 0. It is contradictory. Thus, Ω = ∅, namely Aξ = αξ on M .
This completes the proof. ¥
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