• Title/Summary/Keyword: Jacobi method

Search Result 85, Processing Time 0.023 seconds

An Efficient Parallel Algorithm for Solving Large Sparse Linear Systems of Equations (대형 Sparse 선형시스템 방정식을 풀기위한 효과적인 병렬 알고리즘)

  • Chae, Soo-Hoan;Lee, Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.388-397
    • /
    • 1989
  • This paper describes an intelligent iterative parallel algorithm for solving large sparse linear systems of equations, and proposes a ststic dataflow computer architechture for the implementation of the algorithm. Implemented with the Jacobi interative method, the intelligent algorithm reduces the parallel execution time by reducing the individual inner product operation time.

  • PDF

A Study on the Nonlinear and Linear Analysis of Microwave Diode Mixer (마이크로波 다이오드 混合器의 非線形 및 線形解析에 關한 硏究)

  • Park, Eui-Joon;Park, Cheong-Kee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.7-15
    • /
    • 1989
  • A technique is suggested which enables the large signal current and voltage waveforms to be determined for a GaAs Schottky-Barrier diode mixer by extracting the algorithm for the nonlinear circuit analysis from the Gauss-Jacobi relaxation and the application of the Harmonic Balance Technique. Both the nonlinear and linear steps of the analysis are included. This analysis permitts accurate determination of the conversion loss for microwave mixer and the computer simulation provides an method applicable to MMIC design. The validity of the nonlinear and linear analysis is confirmed by comparing the simulation results with experimental data of the conversion loss.

  • PDF

ON SOME NEW SOLITONS SOLUTIONS OF NONLINEAR COMPLEX GINZBURG-LANDAU EQUATION SOLVED BY MODIFIED JACOBI ELLIPTIC FUNCTIONS METHOD

  • AICHA BOUSSAHA;HALIM ZEGHDOUDI;RAMAN VINOTH
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.391-398
    • /
    • 2024
  • This article explains how solitons propagate when there is a detuning factor involved. The explanation is based on the nonlinear complex Ginzburg-Landau equation, and we first consider this equation before systematically deriving its solutions using Jacobian elliptic functions. We illustrate that one specific ellipticity modulus is on the verge of occurring. The findings from this study can contribute to the understanding of previous research on the Ginzburg-Landau equation. Additionally, we utilize Jacobi's elliptic functions to define specific solutions, especially when the ellipticity modulus approaches either unity or zero. These solutions correspond to particular periodic wave solitons, which have been previously discussed in the literature.

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Model Reference Adaptive Control for Linear System with Improved Convergence Rate -SIGNAL SYNTHESIS METHOD- (선형시스템을 위한 개선된수렴속도를 갖는 기준모델 적응제어기- SYNTHESIS METHOD)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.733-739
    • /
    • 1988
  • Adaptive controllers for linear system whose nominal values of coefficients only are known, that is corrupted by disturbance, are designed by signal synthesis model reference adaptive control (MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the conrergence rate of the design, an indirect suboptimal control law is de rived using the Hamilton Jacobi Beellman equation. Proper compensaton for the effects of time varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.

An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU (Coloring이 적용된 Gauss-Seidel 해법을 통한 CPU와 GPU의 연산 효율에 관한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • The performance of the colored Gauss-Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss-Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss-Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.