References
- Z.I. Al-Muhiameed and E.A.-B. Abdel-Salam, Generalized Jacobi elliptic function solution to a class of nonlinear schrodinger-type equations, Mathematical Problems in Engineering (2011).
- A.H. Arnous and L. Moraru, Optical solitons with the complex Ginzburg-Landau equation with Kudryashov's law of refractive index, Mathematics 10 (2022), 3456.
- V.L. Ginzburg and L. Landau, On the theory of superconductivity, Springer 2009, 113-137.
- K. Hosseini, M. Mirzazadeh, M. Osman, M. Al Qurashi, and D. Baleanu, Solitons and Jacobi elliptic function solutions to the complex Ginzburg-Landau equation, Frontiers in Physics 8 (2020), 225.
- Y.S. Kivshar and G.P. Agrawal, Optical solitons: from fibers to photonic crystals, Academic press 265 (2003), 169548.
- N.A. Kudryashov, Exact solutions of the complex Ginzburg-Landau equation with law of four powers of nonlinearity, Optik 265 (2022).
- M. Mirzazadeh, A. Arnous, M. Mahmood, E. Zerrad, and A. Biswas, Soliton solutions to resonant nonlinear Schrodinger's equation with time-dependent coefficients by trial solution approach, Nonlinear Dynamics 81 (2015), 277-282. https://doi.org/10.1007/s11071-015-1989-1
- M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, A.H. Kara, D. Milovic, F.B. Majid, A. Biswas and M. Belic, Optical solitons with complex Ginzburg-Landau equation, Nonlinear Dynamics 54 (2016), 167.
- Z. Pinar and T. Ozis, Observations on the class of "balancing principle" for nonlinear PDES that can be treated by the auxiliary equation method, Nonlinear Analysis: Real-World Applications 23 (2015), 9-16. https://doi.org/10.1016/j.nonrwa.2014.11.001
- B.I. Shraiman, A. Pumir, W. van Saarloos, P.C. Hohenberg, H. Chate and M. Holen, Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation, Physica D: Nonlinear Phenomena 57 (1992), 241-248. https://doi.org/10.1016/0167-2789(92)90001-4