• 제목/요약/키워드: Jacobi field

검색결과 41건 처리시간 0.029초

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • 제1권1호
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force

  • Mirjavadi, Seyed Sajad;Nikookar, Mohammad;Mollaee, Saeed;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2020
  • The present paper deals with analyzing nonlinear forced vibrational behaviors of nonlocal multi-phase piezo-magnetic beam rested on elastic substrate and subjected to an excitation of elliptic type. The applied elliptic force may be presented as a Fourier series expansion of Jacobi elliptic functions. The considered multi-phase smart material is based on a composition of piezoelectric and magnetic constituents with desirable percentages. Additionally, the equilibrium equations of nanobeam with piezo-magnetic properties are derived utilizing Hamilton's principle and von-Kármán geometric nonlinearity. Then, an exact solution based on Jacobi elliptic functions has been provided to obtain nonlinear vibrational frequencies. It is found that nonlinear vibrational behaviors of the nanobeam are dependent on the magnitudes of induced electrical voltages, magnetic field intensity, elliptic modulus, force magnitude and elastic substrate parameters.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • 제2권1호
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • 제38권3호
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel (정적 연소실내 난류 예혼합화염 전파의 시뮬레이션)

  • 권세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제19권6호
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제25권5호
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.

Level Set based Shape Optimization using Extended B-spline Bases (확장 B-spline 기저 함수를 이용한 레벨셋 기반의 형상 최적 설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.391-396
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady state heat conduction problems. The only inside of complicated domain is identified by the level set functions and taken into account in computation. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. The nucleation of holes is possible whenever and wherever necessary during the optimization using a topological derivative concept.

  • PDF

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • Honam Mathematical Journal
    • /
    • 제36권4호
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.

ARITHMETIC OF THE MODULAR FUNCTION $j_4$

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • 제36권4호
    • /
    • pp.707-723
    • /
    • 1999
  • Since the modular curve $X(4)=\Gamma(4)/{\mathfrak{}}^*$ has genus 0, we have a field isomorphism K(X(4)){\approx}\mathcal{C}(j_{4})$ where $j_{4}(z)={\theta}_{3}(\frac{z}{2})/{\theta}_{4}(\frac{z}{2})$ is a quotient of Jacobi theta series ([9]). We derive recursion formulas for the Fourier coefficients of $j_4$ and $N(j_{4})$ (=the normalized generator), respectively. And we apply these modular functions to Thompson series and the construction of class fields.

  • PDF

Some Finite Integrals Involving Srivastava's Polynomials and the Aleph Function

  • Bhargava, Alok;Srivastava, Amber;Mukherjee, Rohit
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.465-471
    • /
    • 2016
  • In this paper, we establish certain integrals involving Srivastava's Polynomials [5] and Aleph Function ([8], [10]). On account of general nature of the functions and polynomials involved in the integrals, our results provide interesting unifications and generalizations of a large number of new and known results, which may find useful applications in the field of science and engineering. To illustrate, we have recorded some special cases of our main results which are also sufficiently general and unified in nature and are of interest in themselves.