• Title/Summary/Keyword: JIP analysis

Search Result 92, Processing Time 0.023 seconds

Drought Stress Influences Photosynthesis and Water Relations Parameters of Synurus deltoides (건조스트레스가 수리취의 광합성 및 수분관련 특성에 미치는 영향)

  • Lee, Kyeong-Cheol;Lee, Hak Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.288-299
    • /
    • 2017
  • This study was conducted to find out the influence of drought stress on physiological responses of Synurus deltoides. Drought stress was induced by withholding water for 25 days. Leaf water potentials were decreased of both predawn (${\Psi}_{pd}$) and mid-day (${\Psi}_{mid}$) with increasing drought stress, but water saturation dificit (WSD) was 7 times increased. ${\Psi}_{pd}-{\Psi}_{mid}$ showed the significant difference of 0.22~0.18 MPa in stressed before 10 days, and nonsignificant as treatment time became longer. A strong reduction of stomatal conductance ($gH_2O$) and stomatal transpiration rate (E) were observed after 15 days of drought stress Significant reductions of net apparent quantum yield (${\Phi}$) and maximum photosynthesis rate ($Pn_{max}$) were observed after 20 days of drought stress; However, water use efficiency (WUE) was shown the opposite trend. This implies that decrease of photosynthesis rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. From JIP analysis, flux ratios (${\Psi}_O$ and ${\Phi}_{EO}$) and performance index on absorption basis ($PI_{ABS}$) were dramatically decreased withholding water after 15 days, which reflects the relative reduction of photosystem II activity. The leaf of S. deltoides showed osmotic adjustment of -0.35 MPa at full turgor and -0.40 MPa at zero turgor, and also cell-wall elastic adjustment of 9.4 MPa, indicating that S. deltoides tolerate drought stress through osmotic adjustment and cell-wall elastic adjustment. The degree of change in water relations parameters such as Vo/DW, Vt/DW decreased with increasing drought stress. This result showed that S. deltoides was exhibited a strong reduction of photosynthetic activity to approximately -0.93 MPa of predawn leaf water potential, and both of osmotic adjustment and cell-wall elastic adjustment in drought stress condition appears to be an important adaptation for restoration in this species.

Case Study on Combustion Stabilization in FASTRAC Thrust Chamber Using Acoustic Cavities (FASTRAC 연소기에서 음향공을 이용한 연소불안정 제어 사례 연구)

  • Kim, Hong-Jip;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.29-36
    • /
    • 2012
  • 3-D linear acoustic analysis has been performed to elucidate damping characteristics of large Helmholtz acoustic cavities in FASTRAC thrust chamber. Acoustic impedance concept has been introduced to quantify combustion stabilization capacity. For a given acoustic cavity, sonic velocity in the cavity to achieve an optimal tuning has been determined and satisfactory agreement with the previous results has been obtained. Feasible estimation of sonic velocity in the acoustic cavity has been devised. Results show similar trends without significant deviations, which can be used in the procedure of design and verification of acoustic cavity. From the satisfactory results, investigation of other thrust chambers with acoustic cavities which have shown combustion instabilities will be done as future works.

Kaempferol Inhibits Enterovirus Proliferation through MAPK Signal Regulation (Kaempferol의 MAPK 신호 조절을 통한 심근염 유발 엔테로바이러스 증식 억제)

  • Jang, Jin-Hwa;Jeong, Hae-In;Lim, Byung-Kwan;Nam, Sang-Jip
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • We investigated the efficacy of single compound of plant extract in coxsackievirus B3 (CVB3) infection. CVB3 is a main cause of Hand-foot-mouth diseases (HFMD) and viral myocarditis in children and adult. Several single compounds of plant extract were purified by HPLC and tested as antiviral drug candidate. Among them, kaempferol was selected to effective anti-enterovirus compound by HeLa cells survival assay. CVB3 infected HeLa cells were treated with kaempferol ($100{\mu}g/ml-100ng/ml$) and their antiviral effect was confirmed. After 16 hours of treatment, HeLa cells were lysed and proteins were extracted for western blot analysis. CVB3 viral capsid protein VP1 production and transcription factor eIF4G-1 cleavage was significantly decreased in $100{\mu}g/ml$ kaempferol treatment. Virus replication was observed by virus RNA amplification. Kaempferol strongly reduced virus positive and negative strand RNA amplification. Moreover, MAPK signal induced by CVB3 infection, pERK and pmTOR, kaempferol treatment significantly inhibited the activity. Plant extract single compound, kaempferol, is a strong candidate to be developed non-toxic anti-enterovirus treatment agent.

The effects of the Control of Combustion Instabilities in accordance with various Acoustic Cavities (음향공 형상에 따른 연소 불안정 제어 효과)

  • Cha Jung-Phil;Yang Jea-Jun;Seo Ju-Hyoung;Kim Hong-Jip;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.73-76
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. Geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

  • PDF

A Thermal Analysis of Liquid Rocket Combustors using a Modelling of Film Cooling Performance (막냉각 모형을 이용한 액체로켓엔진 연소기의 열해석)

  • Kim, Hong-Jip;Cho, Won-Kook;Moon, Yoon-Wan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • A design program has been developed to predict film cooling performance of a liquid rocket engine. A thermal protecting effect of low mixture ratio gas layer has been analysed by CFD. A one-dimensional film cooling model based on the CFD results has been implemented to the previously developed design program of regenerative cooling. Satisfactory agreement has been achieved by comparing the predicted maximum heat flux at the throat of a subscale chamber and the average measured value, and the predicted nozzle average heat flux and the measured value for a full scale chamber with film cooling. It is ascertained that the film cooling is effective to reduce the throat heat flux in rocket engine chamber.

Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber (막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구)

  • Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2006
  • The effects of the changes of a film cooling mass flow rate and operating conditions on wall heat flux characteristics of a subscale calorimetric combustion chamber were investigated by experiment and numerical analysis. At the nominal operating condition, with the film cooling mass flow rate being 10.5 percent of a main fuel mass flow rate, maximum heat flux at the nozzle throat was measured to be 30 percent lower than that without the film cooling. For the relatively higher mixture ratio and chamber pressure condition, maximum heat flux at the nozzle throat was increased by 31 percent compared to that of the nominal condition test without film cooling.

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

Acoustic Tests on Atmospheric Condition in a Liquid Rocket Engine Chamber (액체로켓엔진 연소실에서의 상온 음향 시험)

  • Ko, Young-Sung;Lee, Kwang-jin;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Acoustic characteristics of unbaffled and baffled combustion chamber are experimentally investigated under atmospheric condition to preliminarily determine baffle for mitigation of combustion instability. To investigate the effect of the baffle which has several configurations such as radial baffles and hub/blade baffle, resonant-frequency shift and damping factors of the chamber were analyzed and compared quantitatively with those of the unbaffled combustion chamber. From a view of acoustic characteristics, radial baffles with several configurations have not much difference in resonant-frequency shift and damping factor ratio with each other. On the other hand, hub and blade baffle is very effective to suppress the first tangential mode which was found to be the most harmful acoustic mode in KSR(Korean Sounding Rocket)-III engine. But more study on design parameters such as hub size and axial length should be done for complete optimization of hub and blade baffle. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

Maximum Trimmed Likelihood Estimator for Categorical Data Analysis (범주형 자료분석을 위한 최대절사우도추정)

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • We propose a simple algorithm for obtaining MTL(maximum trimmed likelihood) estimates. The algorithm finds the subset to use to obtain the global maximum in the series of eliminating process which depends on the likelihood of cells in a contingency table. To evaluate the performance of the algorithm for MTL estimators, we conducted simulation studies. The results showed that the algorithm is very competitive in terms of computational burdens required to get the same or the similar results in comparison with the complete enumeration.

A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM (SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구)

  • Jang, D.J.;Choi, Y.M.;Choi, H.K.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.