• Title/Summary/Keyword: JERK

Search Result 154, Processing Time 0.03 seconds

Design of Jerk Bounded Feed Rate with Look Ahead using Adaptive NURBS Interpolator (NURBS 적응보간기를 이용한 Jerk 제한 이송속도 생성)

  • Kweon S.H.;Mohan S.;Yang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.457-458
    • /
    • 2006
  • A method for obtaining smooth, jerk bounded feed rate profile in high speed machining has been developed. This study proposes a NURBS interpolator based on adaptive feed rate control with a well developed look ahead algorithm which takes into account the machining dynamics as well. Limitation of jerk and proportional torque rate result in smoothened loads on the machine which effectively reduces excitation of the resonant frequencies of the machine. It is found that the values of the feed rate of the down stream sharp corner have profound effect on the feed rate of the upstream sharp corners. By using a windowing scheme the feed rate profile obtained after look ahead method is re-interpolated to reduce the jerk related problems. This is compared with the adaptive NURBS interpolator to show the effectiveness of the proposed method. Simulation results indicate that the consideration of 'ripple effect' is important in avoiding jerk and thereby increasing the machining accuracy.

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Kinematic Analysis of Jerk Motion during Successful and Failed Trials of a Male Weight lifter -Case Study of an Olympic Gold Medalist- (역도 용상 Jerk기술동작의 성공.실패에 대한 운동학적 분석 -사례연구-)

  • Park, Tae-Min;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.739-748
    • /
    • 2009
  • The purpose of this study was to compare successful and failed trials of the dean and jerk exercise performed by an 2008 Beijing Olympic gold medalist. One successful and one failed trial of an Olympic gold medalist (2008 Beijing Olympic 77 kg event) were investigated for this study. A three-dimensional motion analysis was performed, using three digital camcorders (SF: 6Hz). The events were recorded during the 89th Korean National Athletic Games. After analyzing the jerk motion, the following results were found. The successful trial revealed a shorter performance time at Phase 1 and a longer one at Phase 3 and Phase 4 as compared to the failed trial. The vertical displacement of the knee in failed trial was lower than that m the successful one. The differences in the vertical velocity of barbell and knee between the trials were seen at Phase 3 and Phase 4. A faster COM inferior velocity was seen in the successful trial at Phase 3. A more flexed knee angle was seen in the failed trial as compared to the successful trial at E3.

Analysis of golf putting for Elite & Novice golfers Using Jerk Cost Function (저크비용함수를 이용한 골프 숙련자와 초보자간의 퍼팅 동작 분석)

  • Lim, Young-Tae;Choi, Jin-Sung;Han, Young-Min;Kim, Hyung-Sik;Yi, Jeong-Han;Jun, Jae-Hun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The purpose of this study was to identify critical parameters of a putting performance using jerk cost function. Jerk is the time rate of change of acceleration and it has been suggested that a skilled performance is characterized by decreased jerk magnitude. Four elite golfers($handicap{\leq}2$) and 4 novice golfers participated in this study for the comparison. The 3D kinematic data were collected for each subject performing 5 trials of putts for each of these distances (random order): 1m, 3m, 5m The putting stroke was divided into 3 phases such as back swing. down swing and follow-through. In this study, it was assumed that there exist smoothness difference between elite and novice golfers during putting. The distance and jerk-cost function of Putting stroke for each phase were analyzed Results showed that there was a significant difference in jerk cost function at putter toe (at media-lateral direction) and at the center of mass between two groups by increasing putting distance. From these it could be concluded that jerk can be used as a kinematic parameter for distinguishing elite and novice golfers.

Extraction of Major Training Method that are Highly Related to Snatch Record and Jerk Record Improvement (역도 인상, 용상 기록향상과 관계가 높은 주요 훈련종목 추출)

  • Moon, Young Jin;Park, Tae Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.148-153
    • /
    • 2021
  • Objective: It is to extract training items that have a high relationship with the improvement of weightlifting records through correlation and regression analysis between training methods used commonly in the field and Snatch records and jerk records. Through this, it is intended to promote training efficiency to improve the records of weightlifters. Method: For 90 elite weightlifters of the professional teams, 4 groups (lightweight (30 people): 61 kg, 67 kg, 73 kg., middleweight (30 people): 81 kg, 89 kg, 96 kg., heavyweight (30 people): 102 kg, 109 kg, +109 kg., the whole group (90 people)) were divided. At the significance level of 0.05, correlation analysis and linear regression analysis were performed between record of training methods used widely in the field and Snatch records and Jerk records. Results: First, the better the record in Jerk, the better the Snatch record. Second, the three training methods HS, ForceS and WP performed in the field were all found to be important factors related to the improvement of Snatch record. Third, In the jerk where there are more types of training than Snatch, three training methods (HC, ForceS, BPP) appeared to be an important training method for improving the jerk record. Conclusion: While many training methods have been devised and carried out in the field, 3 types of training (HS, ForceS, WP) for improving Snatch record and 3 types of training (HC, ForceS, BPP) for improving Jerk record was found to be the most influential training method. Since all of them showed a large value of explanatory power by regression analysis, it is considered that this study is meaningful in that it can promote training efficiency by simplifying although there are many types of training for athletes.

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

Acceleration Optimization of a High-speed LCD Transfer Crane Using Finite Jerk (고속 LCD 이송 시스템의 진동감소를 위한 Finite Jerk 적용 가속도 최적화)

  • Chung W.J.;Song T.J.;Jung D.W.;Cho Y.D.;Bang D.J.;Yoon Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1906-1909
    • /
    • 2005
  • This paper presents the acceleration optimization of a high-speed LCD (Liquid Crystal Display) transfer system for the minimization of vibration. To reduce vibration is one of key requirements for the dynamic control of a high-speed LCD transfer system. In this paper, the concept of finite jerk (the first derivative of acceleration) has been introduced for realizing input acceleration. The profile of finite jerk has been optimized using a genetic algorithm so that vibration effect can be minimized. In order to incorporate a genetic algorithm, the dynamic model of a LCD transfer system which is realized by using the $ADAMS^{(R){$ software has been linked to the simulation system constructed by the $MATLAB^{(R)}$. The simulation results illustrated that the duration of finite jerk can be optimized so as to minimize the magnitude of vibration. It has been also shown that the acceleration optimization with finite jerk can make the high-speed motion of a LCD transfer system result in low vibration, compared with the conventional motion control with trapezoidal velocity profile.

  • PDF

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

A Study of the Driveability Improvement on the Electronic Throttle Control M/T Vehicle at Tip-in/out (스로틀 전자제어 방식 M/T차량의 가/감속 시 운전성 향상에 관한 연구)

  • Park, Kyoung-Seok;Lee, Jong-Hwa;Park, Jin-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • The passenger car drivers want in general to feel good driveability, but they sometimes feel uncomfortable by shock and jerk phenomena when they push or release acceleration pedal with clutch on state. In this paper, the shock and jerk characteristics are studied on the vehicles controlled by the throttle-by-wire system. Experiments and simulations were carried out on two vehicles which show different control characteristics. The engine torque control characteristics was analyzed by measuring cylinder pressure. Various specification factors of the vehicles and the torque control logic of the engines were simulated through experimental data basis. The result shows the spring effect of the trans-axle in the drive-train is one of the most important factors of the shock-jerk phenomena and the engine torque control method is also responsible for the reducing the shock-jerk amplitude. In this paper a new control logic of the engine torque is suggested for the better driveablility on the tip-in/out event.