• Title/Summary/Keyword: JASS (Journal of Astronomy and Space Sciences)

Search Result 869, Processing Time 0.031 seconds

The BV Photometry of the RR Lyrae Star, BH Ursae Majoris: Light Curves and Period Study

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • The first presented BV light curves of BH UMa confirmed Krajci's (2005) result that BH UMa is an RR Lyr star that belongs to the RRc subgroup. The light curves showed a slight asymmetry of D = 0.453 with an amplitude of about $0.^m58$ in B, $0.^m47$ in V, and $0.^m11$ in B-V and with a small hump between $0.^p82$ and $0.^p86$. We determined nine new times of minimum light and eight times of maximum light. We also analyzed all of the available unanalyzed minimum timings and found for the first time that the period of BH UMa has varied dramatically in at least three independent sinusoidal ways superposed on a secularly downward parabola over 66 years. The secular period decreasing rate was obtained as $6.^d684{\times}10^{-8}y^{-1}$, corresponding to -0.58 s/century. The semi-amplitude and period for each of the three sinusoidal variations were ($0.^d058$, $14.^y44$), ($0.^d044$, $9.^y98$), and ($0.^d005$, $0.^y97$), respectively. It is uncertain whether the periodicity for the shortest period of $0.^y97$ is real or spurious. The secular period decrease, well consistent with those of the other RRc stars, could be considered as a natural result of the evolution of the BH UMa system. The two possible sinusoidal terms were interpreted as both two light-time effects due to two additional bodies orbiting BH UMa and combinations of random fluctuations in the pulsation period of BH UMa. Two interpretations were shortly discussed with related parameters.

Analysis of Linear and Nonlinear Relative Orbit Dynamics for Satellite Formation Flying (선형 및 비선형 상대궤도운동 모델들의 정확도 분석)

  • Park, Han-Earl;Park, Sang-Young;Lee, Sang-Jin;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.317-328
    • /
    • 2009
  • Relative dynamic models of satellites which describe the relative motion between two satellites is fundamental for research on the formation flying. The accuracy of various linearized or nonlinear models of relative motion is analyzed and compared. A 'Modeling Error Index (MEI)' is defined for evaluating the accuracy of models. The accuracy of the relative dynamic models in various orbit circumstance are obtained by calculating the modeling error with various eccentricities of the chief orbit and distances between the chief and the deputy. It is found that the modeling errors of the relative dynamic models have different values according to the eccentricity, J2 perturbation, and the distance between satellites. Since the evaluated accuracy of various models in this paper means the error of dynamic models of the formation flying, the results of this paper are very useful for choosing the appropriate relative model of the formation flying mission.

THE DEVELOPMENT OF Q-BAND HEMT RECEIVER FOR VLBI (VLBI용 Q-band HEMT 수신기 개발)

  • 제도홍;한석태;김태성;김현주;김광동;정문희;이창훈;노덕규
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.1
    • /
    • pp.29-38
    • /
    • 2004
  • A ultra low noise Q-band HEMT receiver for VLBI has been developed using a local oscillator with a very high phase stability. The performance of receiver was verified by comparison with receivers which were developed at the other countries. The receiver noise temperature shows 65 K in the frequency ragne from 42 ㎓ to 44 ㎓, less than 100 K from 39 ㎓ to 46 ㎓, respectively. A receiver noise temperature at SiO major line of 43㎓ which will be mainly observed by using this receiver has been optimized.

Analysis of the Tsyganenko Magnetic Field Model Accuracy during Geomagnetic Storm Times Using the GOES Data

  • Song, Seok-Min;Min, Kyungguk
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2022
  • Because of the small number of spacecraft available in the Earth's magnetosphere at any given time, it is not possible to obtain direct measurements of the fundamental quantities, such as the magnetic field and plasma density, with a spatial coverage necessary for studying, global magnetospheric phenomena. In such cases, empirical as well as physics-based models are proven to be extremely valuable. This requires not only having high fidelity and high accuracy models, but also knowing the weakness and strength of such models. In this study, we assess the accuracy of the widely used Tsyganenko magnetic field models, T96, T01, and T04, by comparing the calculated magnetic field with the ones measured in-situ by the GOES satellites during geomagnetically disturbed times. We first set the baseline accuracy of the models from a data-model comparison during the intervals of geomagnetically quiet times. During quiet times, we find that all three models exhibit a systematic error of about 10% in the magnetic field magnitude, while the error in the field vector direction is on average less than 1%. We then assess the model accuracy by a data-model comparison during twelve geomagnetic storm events. We find that the errors in both the magnitude and the direction are well maintained at the quiet-time level throughout the storm phase, except during the main phase of the storms in which the largest error can reach 15% on average, and exceed well over 70% in the worst case. Interestingly, the largest error occurs not at the Dst minimum but 2-3 hours before the minimum. Finally, the T96 model has consistently underperformed compared to the other models, likely due to the lack of computation for the effects of ring current. However, the T96 and T01 models are accurate enough for most of the time except for highly disturbed periods.

Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

  • Mihn, Byeong-Hee;Lee, Ki-Won;Ahn, Young Sook;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • During the reign of King Sejong (世宗, 1418-1450) in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋), Jin(金), and Yuan(元) dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak), and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺) based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree) like Honsang (a celestial globe). We also found that Hyeonju ilgu (a equatorial sundial) has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter). This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

  • Mengist, Chalachew Kindie;Kim, Yong Ha;Yeshita, Baylie Damtie;Workayehu, Abyiot Bires
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

Seasonal Characteristics of the Longitudinal Wavenumber-4 Structure in the Equatorial Ionospheric Anomaly

  • Kim, E.;Jee, G.;Kim, Y.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2008
  • Using the global total electron contents (TEC) measured by the TOPEX satellite from Aug. 1992 to Oct. 2005, we investigate the variations of the longitudinal wavenumber-4 (LW-4) structure in the equatorial anomaly (EA) crests with season, local time, and solar activity. Our study shows that the LW-4 structure in the EA crests ($5{\sim}20^{\circ}$ MLAT in both hemispheres) has clear four peaks at fixed longitude sectors during the daytime for both equinoxes and June solstice. In spite of being called a wavelike structure, however, the magnitudes and spatial intervals of the four peaks are far from being the same or regular. After sunset, the four-peak structure begins to move eastward with gradual weakening in its amplitude during equinoxes and this weakening proceeds much faster during June solstice. Interestingly, the longitudinal variations during December solstice do not show clear four-peak structure. All these features of the LW-4 structure are almost the same for both low and high solar activity conditions although the ion densities are greatly enhanced from low to high solar activities. With the irrelevancy of the magnetic activity in the LW-4, this implies that the large changes of the upper atmospheric ion densities, one of the important factors for ion-neutral interactions, have little effect on the formation of the LW-4 structure. On the other hand, we found that the monthly variation of the LW-4 is remarkably similar to that of the zonal component of wavenumber-3 diurnal tides at low latitudes, which implies that the lower atmospheric tidal forcing, transferred to the upper atmosphere, seems to have a dominant role in producing the LW-4 structure in the EA crests via the E-region dynamo.

CO TO H2 RATIO OF INTERSTELLAR MOLECULAR CLOUDS IN THE DIRECTIONS OF EARLY TYPE STARS (초기형 별 방향 성간운의 CO 와 H2 비율 계산)

  • Park, Jae-Woo;Lee, Dae-hee;Min, Kyoung-Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.243-248
    • /
    • 2004
  • We present measurements of interstellar CO absorption lines in the spectra of 7 early-type stars that were observed with the FUSE(Far Ultraviolet Spectroscopic Explore.) Among 54 early-type target stars in the Galactic disk and halo observed with the BBFS(Berkeley Extreme and Far-ultraviolet Spectrometer), we choose 7 program stars (HD 37903, HD 97991, HD 149881, HD 156110, HD 164794, HD 214080 and HD 219188) which have only a single velocity component in the high-resolution optical measurements, in order to avoid line blending. To analyze the CO molecule, we select the E-X (0-0) band at $1076{\AA}$, which has a large oscillate. strength and is not blended with other interstellar absorption lines. We detect the CO absorption lines in three (HD 37903, HD 164794, and HD 214080) out of seven targets, and derive CO column densities for those targets. We also estimated the CO to $H_2$ ratios toward the three stars, based on the previously estimated $H_2$ column densities.

Flight Dynamics and Navigation for Planetary Missions in Korea: Past Efforts, Recent Status, and Future Preparations

  • Song, Young-Joo;Lee, Donghun;Bae, Jonghee;Kim, Young-Rok;Choi, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.119-131
    • /
    • 2018
  • In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the $11^{th}$ member of the "Space Club" in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.

Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

  • Lee, Jaewon;Park, Inchun;Kim, Junsik;Lee, Jaejin;Hwang, Junga;Kim, Young-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a high-altitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of $15.27{\mu}Sv$) of aircrew at the high-altitude are an order of magnitude larger than those (an average of $0.30{\mu}Sv$) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC-800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.