• 제목/요약/키워드: Iterative Numerical Calculation

검색결과 68건 처리시간 0.019초

확산 은하 복사광에 대한 평면 평행 모델 (A PLANE-PARALLEL MODEL OF THE DIFFUSE GALACTIC LIGHT)

  • 선광일
    • 천문학논총
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2009
  • A plane-parallel model of the diffuse Galactic light (DGL) is calculated assuming exponential disks of interstellar dust and OB stars, by solving exactly the radiative transfer equation using an iterative method. We perform a radiative transfer calculation for a model with generally accepted scale heights of stellar and dust distribution and compare the results with those of van de Hulst & de Jong for a constant slab model. We also find that the intensity extrapolated to zero dust optical depth has a negative value, against to the usual expectation.

동적 해석의 효율적 축소 기법에 관한 연구 (Study on the efficient dynamic system condensation)

  • 백승민;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Fast iterative algorithm for calculating the critical current of second generation high temperature superconducting racetrack coils

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.53-58
    • /
    • 2019
  • The critical current is one of the key parameters of high temperature superconducting (HTS) racetrack coils. Therefore, it is significant to calculate critical currents of HTS coils. This paper introduces a fast iterative algorithm for calculating the critical current of second generation (2G) HTS coils. This model does not need to solve long charging transients which greatly reduced the amount of calculation. To validate this model, the V-I curve of four 2G HTS double racetrack coils are measured. The effect of the silicon steel sheet on the critical current of the racetrack coil is also studied based on this algorithm.

그래픽처리장치를 이용한 레이놀즈 방정식의 수치 해석 가속화 (Accelerating Numerical Analysis of Reynolds Equation Using Graphic Processing Units)

  • 명훈주;강지훈;오광진
    • Tribology and Lubricants
    • /
    • 제28권4호
    • /
    • pp.160-166
    • /
    • 2012
  • This paper presents a Reynolds equation solver for hydrostatic gas bearings, implemented to run on graphics processing units (GPUs). The original analysis code for the central processing unit (CPU) was modified for the GPU by using the compute unified device architecture (CUDA). The red-black Gauss-Seidel (RBGS) algorithm was employed instead of the original Gauss-Seidel algorithm for the iterative pressure solver, because the latter has data dependency between neighboring nodes. The implemented GPU program was tested on the nVidia GTX580 system and compared to the original CPU program on the AMD Llano system. In the iterative pressure calculation, the implemented GPU program showed 20-100 times faster performance than the original CPU codes. Comparison of the wall-clock times including all of pre/post processing codes showed that the GPU codes still delivered 4-12 times faster performance than the CPU code for our target problem.

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.

점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석 (A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor)

  • 조강래;이진호;김주환
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.1044-1051
    • /
    • 1989
  • 본 연구에서는 Wu가 제시한 수학적 모델에 기초를 둔 비점성 준3차원 유동해 석에 실제 유체의 점성효과 및 2차유동 등에 의해 발생하는 손실들을 손실모델로 반영하여 그 타당성 유무를 검토하는 데 목적을 두었다.

수치계산에 의한 활주선의 항주 자세 및 저항 추정 (Numerical Prediction of Running Attitude and Resistance of Planing Craft)

  • 오광호;유재훈
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.95-103
    • /
    • 2013
  • Prediction of the running posture is important to evaluate the resistance by the numerical calculation for a high speed vessel. Especially for a planing craft having a large variation of running attitude it becomes more essential, but it can not be obtained easily because the running posture and the hydrodynamic forces including the resistance are interacted with each other. So iterative calculation to obtain the dynamic forces according to the changes in attitude is necessary, in this study, considering the calculated hydrodynamic force at the assumed draft as the additional buoyancy the corrected draft is calculated through satisfying the equilibrium between the buoyancy and the hull weight. To verify the derived method three kinds of hull forms were used with the results of model tests, R/V ATHENA and 150 tons class guide vessel for middle-speed semi-planing crafts, 28 feet fast boat for a high-speed planing boat. For all cases with several iterations the converged value of draft can be obtained, lastly the resistance and flow around hull were simulated by using VOF method.

수정된 PISO 알고리즘을 이용한 응고 및 융해 현상의 수치해석 (Numerical Analysis of Solidification and Melting Phase Change Using Modified PISO algorithm)

  • 강관구;유홍선;허남건
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.12-20
    • /
    • 2003
  • A numerical procedure for the calculation of solidification and melting phase change using PISO algorithm is presented. In case of phase change problem, the coupling between velocity/pressure/temperature and liquid fraction is important. The converged temperature and liquid fraction solution which satisfies the energy balance is acquired by applying enthalpy method into inner iteration in matrix solver. And a modified PISO algorithm version is introduced to properly solve the coupling between velocity/pressure/temperature and liquid fraction. A comparison of the proposed procedure with a standard iterative method shows improvement both in terms of computing speed and robustness.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

Numerical Solutions of Multi-Dimensional Solidification/Melting Problems by the Dual Reciprocity Boundary Element Method

  • Jo, Jong-Chull;Shin, Won-Ky
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.617-624
    • /
    • 1997
  • This Paper Presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available.

  • PDF