• Title/Summary/Keyword: Item-based Collaborative Recommendation

Search Result 122, Processing Time 0.019 seconds

Time-aware Item-based Collaborative Filtering with Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.93-100
    • /
    • 2022
  • In the era of information overload on the Internet, the recommendation system, which is an indispensable function, is a service that recommends products that a user may prefer, and has been successfully provided in various commercial sites. Recently, studies to reflect the rating time of items to improve the performance of collaborative filtering, a representative recommendation technique, are active. The core idea of these studies is to generate the recommendation list by giving an exponentially lower weight to the items rated in the past. However, this has a disadvantage in that a time function is uniformly applied to all items without considering changes in users' preferences according to the characteristics of the items. In this study, we propose a time-aware collaborative filtering technique from a completely different point of view by developing a new similarity measure that integrates the change in similarity values between items over time into a weighted sum. As a result of the experiment, the prediction performance and recommendation performance of the proposed method were significantly superior to the existing representative time aware methods and traditional methods.

Addressing the Cold Start Problem of Recommendation Method based on App (초기 사용자 문제 개선을 위한 앱 기반의 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.69-78
    • /
    • 2019
  • The amount of data is increasing significantly as information and communication technology advances, mobile, cloud computing, the Internet of Things and social network services become commonplace. As the data grows exponentially, there is a growing demand for services that recommend the information that users want from large amounts of data. Collaborative filtering method is commonly used in information recommendation methods. One of the problems with collaborative filtering-based recommendation method is the cold start problem. In this paper, we propose a method to improve the cold start problem. That is, it solves the cold start problem by mapping the item evaluation data that does not exist to the initial user to the automatically generated data from the mobile app. We describe the main contents of the proposed method and explain the proposed method through the book recommendation scenario. We show the superiority of the proposed method through comparison with existing methods.

Addressing the New User Problem of Recommender Systems Based on Word Embedding Learning and Skip-gram Modelling

  • Shin, Su-Mi;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.9-16
    • /
    • 2016
  • Collaborative filtering(CF) uses the purchase or item rating history of other users, but does not need additional properties or attributes of users and items. Hence CF is known th be the most successful recommendation technology. But conventional CF approach has some significant weakness, such as the new user problem. In this paper, we propose a approach using word embedding with skip-gram for learning distributed item representations. In particular, we show that this approach can be used to capture precise item for solving the "new user problem." The proposed approach has been tested on the Movielens databases. We compare the performance of the user based CF, item based CF and our approach by observing the change of recommendation results according to the different number of item rating information. The experimental results shows the improvement in our approach in measuring the precision applied to new user problem situations.

A Case Study on the Recommendation Services for Customized Fashion Styles based on Artificial Intelligence (인공지능에 의한 개인 맞춤 패션 스타일 추천 서비스 사례 연구)

  • An, Hyosun;Kwon, Suehee;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.349-360
    • /
    • 2019
  • This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.

Personalized Group Recommendation Using Collaborative Filtering and Frequent Pattern (협업 필터링과 빈발 패턴을 이용한 개인화된 그룹 추천)

  • Kim, Jung Woo;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.768-774
    • /
    • 2016
  • This paper deals with a method to recommend the combination of items as a group according to similarity to handle application area such as fashion and cooking, while the previous methods recommend single item such as a book, music or movie. Collaborative filtering is a method to recommend an item selected by users with similar tendency based on similarity between users. In this paper, the proposed method generates a set of frequent items based on collaborative filtering and association rules and recommends a group by similarity between groups. To show the validity of the proposed method, experiments are performed with purchase data collected from e-commerce for four months.

Selecting Marketing Domains and Customer Groups by Pre-evaluation on Recommendation (추천 선행평가에 의한 마케팅 도메인 및 고객군 선정)

  • 윤찬식;이수원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.220-229
    • /
    • 2002
  • 협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.

  • PDF

An Effective Preference Model to Improve Top-N Recommendation (상위 N개 항목의 추천 정확도 향상을 위한 효과적인 선호도 표현방법)

  • Lee, Jaewoong;Lee, Jongwuk
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.621-627
    • /
    • 2017
  • Collaborative filtering is a technique that effectively recommends unrated items for users. Collaborative filtering is based on the similarity of the items evaluated by users. The existing top-N recommendation methods are based on pair-wise and list-wise preference models. However, these methods do not effectively represent the relative preference of items that are evaluated by users, and can not reflect the importance of each item. In this paper, we propose a new method to represent user's latent preference by combining an existing preference model and the notion of inverse user frequency. The proposed method improves the accuracy of existing methods by up to two times.

Image recommendation algorithm based on profile using user preference and visual descriptor (사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘)

  • Kim, Deok-Hwan;Yang, Jun-Sik;Cho, Won-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.463-474
    • /
    • 2008
  • The advancement of information technology and the popularization of Internet has explosively increased the amount of multimedia contents. Therefore, the requirement of multimedia recommendation to satisfy a user's needs increases fastly. Up to now, CF is used to recommend general items and multimedia contents. However, general CF doesn't reflect visual characteristics of image contents so that it can't be adaptable to image recommendation. Besides, it has limitations in new item recommendation, the sparsity problem, and dynamic change of user preference. In this paper, we present new image recommendation method FBCF (Feature Based Collaborative Filtering) to resolve such problems. FBCF builds new user profile by clustering visual features in terms of user preference, and reflects user's current preference to recommendation by using preference feedback. Experimental result using real mobile images demonstrate that FBCF outperforms conventional CF by 400% in terms of recommendation ratio.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.149-155
    • /
    • 2022
  • The popularity of e-commerce systems on the Internet is increasing day by day, and the recommendation system, as a core function of these systems, greatly reduces the effort to search for desired products by recommending products that customers may prefer. The collaborative filtering technique is a recommendation algorithm that has been successfully implemented in many commercial systems, but despite its popularity and usefulness in academia, the memory-based implementation has inaccuracies in its reference neighbor. To solve this problem, this study proposes a new time-aware collaborative filtering technique that integrates and utilizes the neighbors of each item and each user, weighting the recent similarity more than the past similarity with them, and reflecting it in the recommendation list decision. Through the experimental evaluation, it was confirmed that the proposed method showed superior performance in terms of prediction accuracy than other existing methods.

A Predictive Algorithm using 2-way Collaborative Filtering for Recommender Systems (추천 시스템을 위한 2-way 협동적 필터링 방법을 이용한 예측 알고리즘)

  • Park, Ji-Sun;Kim, Taek-Hun;Ryu, Young-Suk;Yang, Sung-Bong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.669-675
    • /
    • 2002
  • In recent years most of personalized recommender systems in electronic commerce utilize collaborative filtering algorithm in order to recommend more appropriate items. User-based collaborative filtering is based on the ratings of other users who have similar preferences to a user in order to predict the rating of an item that the user hasn't seen yet. This nay decrease the accuracy of prediction because the similarity between two users is computed with respect to the two users and only when an item has been rated by the users. In item-based collaborative filtering, the preference of an item is predicted based on the similarity between the item and each of other items that have rated by users. This method, however, uses the ratings of users who are not the neighbors of a user for computing the similarity between a pair of items. Hence item-based collaborative filtering may degrade the accuracy of a recommender system. In this paper, we present a new approach that a user's neighborhood is used when we compute the similarity between the items in traditional item-based collaborative filtering in order to compensate the weak points of the current item-based collaborative filtering and to improve the prediction accuracy. We empirically evaluate the accuracy of our approach to compare with several different collaborative filtering approaches using the EachMovie collaborative filtering data set. The experimental results show that our approach provides better quality in prediction and recommendation list than other collaborative filtering approaches.