• Title/Summary/Keyword: Italian rye grass

Search Result 26, Processing Time 0.022 seconds

The Effect of Feeding Mixed-sowing Winter Forage Crop and Whole Crop Barley Silage on Feed Intake, Nutrient Digestibility and Blood Characteristics in the Korean Black Goats (동계사료작물과 혼파한 총체보리 Silage 급여가 흑염소의 사료섭취량, 영양소 소화율 및 혈액성상에 미치는 영향)

  • HwangBo, Soon;Jo, lk-Hwan;Jung, Gi-Woung;Kim, Won-Ho;Lim, Young-Cheol;Kim, Jong-Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • This experiment was carried out to estimate the nutritive value of mixed-sowing winter forage crop and whole crop barley by investigating the effects of feeding mixed-sowing winter forage crop and whole crop barley in KBG (Korean black goat) on feed intake, average daily body weight gain, nutrient digestibility and nitrogen retention. The 12 male KBG were divided into four experimental groups - i.e. T1: barley silage added group, T2: mixed-sowing hairy vetch silage added group, T3: mixed-sowing field peas added silage, T4: mixed-sowing Italian rye grass added silage group. Three KBG per each treatment were allotted into individual metabolic cages by Latin-square design. The results from this study are as follow. The DMI (dry matter intake) and organic matter intake in T4 were significantly (p<0.05) higher than those in T1 and T3 and crude protein intake in T4 also recorded the highest among treatments (p<0.05). The highest values in intakes of ADF and NDF were observed in T4 followed by T2, T1 and T3 in order. The average daily body weight gains in T4 and T2 were significantly (p<0.05) higher than those in TI and T3. The dry and organic matter digestibility in T2 and T4 were significantly (p<0.05) higher than those in T1 and T3. The crude protein digestibility in T1 was significantly (p<0.05) lower than those in T2 and T4. The nitrogen intakes in T2 and T4 were significantly (p<0.05) higher than those in T3. The results obtained from this study suggested that the feeds supplemented with whole crop barley with hairy vetch and Italian rye grass mixture silage increased KBG productivity resulted from increases in feed intake, nutrient digestibility and nitrogen retention.

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF

Comparison of In vivo and In vitro Techniques for Methane Production from Ruminant Diets

  • Bhatta, Raghavendra;Tajima, K.;Takusari, N.;Higuchi, K.;Enishi, O.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1049-1056
    • /
    • 2007
  • This study was conducted to compare the methane ($CH_4$) production estimated by in vivo (sulfur hexafluoride tracer technique ($SF_6$)) with that of two in vitro rumen simulation (RUSITEC) and gas production (IVGPT)) techniques. Four adult dry Holstein cows, aged $7.4{\pm}3.0$ years and weighing $697{\pm}70$ kg, were used for measuring methane production from five diets by the $SF_6$ technique. The experimental diets were alfalfa hay ($D_1$), corn silage + soybean meal (SBM) (910: 90, $D_2$), Italian rye grass hay +SBM (920: 80, $D_3$), rice straw +SBM (910: 90, $D_4$) and Sudan grass hay +SBM (920: 80, $D_5$). Each diet was individually fed to all 4 cows and 5 feeding studies of 17 d each were conducted to measure the methane production. In the RUSITEC, methane production was measured from triplicate vessels for each diet .In vitro gas production was measured for each of the diets in triplicate syringes. The gas produced after 24 and 48 h was recorded and gas samples were collected in vacuum vials and the methane production was calculated after correction for standard temperature and pressure (STP). Compared to the $SF_6$ technique, estimates of methane production using the RUSITEC were lower for all diets. Methane production estimated from 24 h in vitro gas production was higher (p<0.001) on $D_1$ as compared to that measured by $SF_6$, whereas on $D_2$ to $D_5$ it was lower. Compared to $SF_6$, methane production estimated from 48 h in vitro gas production was higher on all diets. However, methane estimated from the mean of the two measurement intervals (24+48 h/2) in IVGPT was very close to that of $SF_6$ (correlation 0.98), except on $D_1$. The results of our study confirmed that IVGPT is reflective of in vivo conditions, so that it could be used to generate a database on methane production potential of various ruminant diets and to examine strategies to modify methane emissions by ruminants.

Effect of Collection Times of Rumen Fluid on In vitro Dry Matter Digestibility of Forage Crops (반추위액 채취 시간이 사료작물의 In vitro 건물 소화율에 미치는 영향)

  • Jo, Nam-Chul;Jung, Min-Woong;Kim, Meing-Jung;Lim, Young-Chul;Yook, Wan-Bang
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • Object of this study were to determine the influence of collection times of rumen fluid on in vitro dry matter digestibility (IVDMD) of forage crops. The donor cow was fed concentrate once a day and given free access to grass-legume mixture hay. Main plot was consisted of different collection time of rumen fluid; T1: 1 hour before concentrate feeding, T2: 1 hour after feeding, T3: 4 hour after feeding and T4: 8 hour after feeding. A total of 7 samples of 4 different forage crops (barely, Italian ryegrass, crimson clover, rye) were used for the estimation of IVDMD and tested in three replicates. For the $DAISY^{II}$ incubation, each sample was inserted into each filter bag then heat-sealed and incubated in a digestion vessel for 48 h at $39^{\circ}C$. The times of rumen fluid collection had no significant effect on the IVDMD values over all varieties except for 2 breeds of IRG (Kogreen and Kospeed). IVDMD values with T1 over all varieties were slightly higher than other treatments, however those with both T1 of Kogreen and Kospeed varieties were significantly higher than T2 (p<.05).

  • PDF

Taxonomy and Identification of Fungi Isolated from Round Bale Silage (원형 곤포사일리지에 발생한 곰팡이의 분류 동정)

  • Nho, W.G.;Yeo, J.M.;Kim, W.Y.;Lee, J.H.;Seo, S.;Kim, M.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.61-83
    • /
    • 2012
  • To identification of fungi that occurs round bale silages, 253 fungal contaminated samples were collected from 2009 to 2011. Total 253 silage samples from Italian ryegrass, sudan grass, rye, corn, barley and oat were analysed. Total 270 strains were purely isolated from contaminated round bale silages. The fungi were identified with morphological characteristics and rDNA sequence analysis. Nineteen species of fungi(Rhizopus sp., Fusarium spp., Coprinus sp., Blastomyces sp., Aureobasidium sp., Polypaecilum sp., Botryoderma sp., Mucor sp., Scytalidium sp., Sphaeropsis sp., Aspergillus spp., Trichocladium sp., Humicola sp., Staphylotrichum sp., Periconia sp., Verticillium sp., Diplococcium sp., Penicillium spp. and Trichoderma spp.) were identified by morphological characteristics. On the other hand, fungi isolated from silage were identified to Acremonium strictum, Aspergillus tubingensis, Bionectria ochroleuca, Dipodascaceae sp., Fusarium proliferatum, Fusarium oxysporum, Fusrium solani, Gelasinospora reticulata, Gibberella moniliformis, Gibberella zeae, Nectria mauritiicola, Penicillium paneum, Pseudallecheria boydii, Schizophyllum commune, Scopulariopsis brevicaulis and Simplicillium lamellicola by rDNA sequence analysis. Penicillium sp. and Trichoderma sp., were isolated 74 and 64 strains, respectively. Humicola sp., Aspergillus sp., Coprinus sp., and Fusarium spp. were identified 10 to 30 strains. Most fungi were isolated together with more than one species in a sample looked like one species with the naked eyes.

Effects of Halogenated Compounds on in vitro Fermentation Characteristics in the Rumen and Methane Emissions (할로겐 화합물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Hwang, Hee-Soon;Ok, Ji-Un;Lee, Shin-Ja;Chu, Gyo-Moon;Kim, Kyoung-Hoon;Oh, Young-Kyoon;Lee, Sang-Suk;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1187-1193
    • /
    • 2012
  • This study was conducted to evaluate effects of halogenated compounds on in vitro rumen fermentation characteristics and methane emissions. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Five kinds of halogenated compounds (bromochloromethane (BCM), 2-bromoethane sulfonic acid (BES), 3-bromopropanesulfonic acid (BPS), chloroform (CLF), and pyromellitic diimide (PMDI) known to inhibit methyl-coenzyme M reductase activity were added to an in vitro fermentation incubated with rumen fluid. The microbial population including bacteria, protozoa, and fungi were enumerated, and gas production including methane and fermentation characteristics were observed in vitro. The pH values ranged from 6.25 to 6.72 in all the treatments, and these showed a similar level at 48 hr. The total gas production in the treatments showed a similar pattern with C at 48 hr, whereas methane production in the treatments was lower (p<0.05) than C. Concentrations of total volatile fatty acids (VFAs) and propionic acid were higher (p<0.05) in the treatments than in C at 12 hr. Therefore, halogenated compounds (BCM, BES, BPS, CLF, and PMDI) inhibited in vitro methane emissions by inhibiting methanogens in the rumen. Further studies on safety are needed.