• 제목/요약/키워드: Issue keyword

검색결과 105건 처리시간 0.025초

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현 (Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS)

  • 서현곤;박희완
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.17-24
    • /
    • 2018
  • 빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.

관계형 데이터베이스에서의 시맨틱 기반 키워드 탐색 시스템 (Semantic-based Keyword Search System over Relational Database)

  • 양영휴
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권12호
    • /
    • pp.91-101
    • /
    • 2013
  • 키워드의 모호성은 효율적인 키워드 탐색에 있어서 일반적인 이슈가 되어왔는데, 이 모호성은 탐색결과의 신뢰성에 큰 영향을 줄 수 있으며, 기본적으로 질의에 사용된 용어 자체가 가지는 문맥상 의미의 모호함에 기인한다. 질의 자체의 모호함뿐만 아니라, 사용자들이 그 탐색 결과를 적절하게 해석하기 위해 결과에 나타나는 키워드간의 관계도 중요하므로 명확하게 명시 되어야 한다. 이 논문에서는 기존의 질의 용어와 스키마 용어/인스턴스간의 키워드 매핑기법을 적용하여 키워드 탐색의 모호성을 해결한다. 용어간의 매핑에서는 질의 키워드와 스키마 용어간의 구문적 유사성은 물론 시맨틱 유사성까지 고려하기 때문에 기존의 시스템에 비해 매핑과 정밀도가 50% 이상 상승하는 결과를 얻을 수 있다. 탐색결과에 나타나는 용어간의 불분명한 관계를 점 더 명확하게 나타내기 위하여 시맨틱 웹 기술을 적용하여 키워드간의 의미 있는 관계를 더 많이 지식베이스 내에서 찾을 수 있도록 하였다.

Rethinking the US Presidential Election: Feminism and Big Data

  • CHUNG, Sae Won;PARK, Han Woo
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.52-61
    • /
    • 2021
  • The 2020 US Presidential Election was a highly-anticipated moment for our global society. During the election period, the most intriguing issue was who would be the winner-Trump or Biden? Among the possible main themes of the 2020 election, from the COVID-19 pandemic to racism, this study focused on feminism ('women') as a main component of Biden's victory. To explore the character of Biden's supporters, this paper focused on internet spaces as a source of public opinion. To guide the data analysis, this study employed four indices from empirical studies on Big Data analytics: issue salience, attention diversity, emotional mentioning, and semantic cohesion. The main finding of this study was that the representative keyword 'women' appeared more prevalently within content related to Biden than Trump, and the keyword pairs indicated that female voters were the main reason for Trump's failure but the root cause of Biden's victory. The results of this study indicated the role of the internet as a forum for public opinion and a fountain of political knowledge, which requires more rigorous investigation by researchers.

키워드 매핑 기반 2차원 물질 연구 영역 탐지와 발전 과정 분석 (Identification of Research Areas and Evolution of 2D Materials by the Keyword Mapping Methodology)

  • 안세정;이준영
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.11-18
    • /
    • 2018
  • Two-dimensional (2D) materials such as transition metal dichalcogenides have attracted tremendous scientific interests owing to their potential of solving the zero band-gap issue of graphene. In this work, the research areas and technology evolutionary dynamics of the 2D materials were identified using the scientometric method focusing on keyword mapping and clustering. The time-series analysis showed that the technological progress of 2D material is in the early growth period. The overlay mapping analysis were carried out to investigate the technology evolution of 2D materials with time. The strategic diagram of co-word analysis classifying the topological positions of keyword was derived to support the analysis results. It is conjectured that extensive research will be conducted widely on the application of 2D materials not only in electronic and optoelectronic devices, but also in various other fields such as biomedical applications, and that their development will be more rapid based on accumulated results of extant graphene research.

Concealed Policy and Ciphertext Cryptography of Attributes with Keyword Searching for Searching and Filtering Encrypted Cloud Email

  • Alhumaidi, Hind;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.212-222
    • /
    • 2022
  • There has been a rapid increase in the use of cloud email services. As a result, email encryption has become more commonplace as concerns about cloud privacy and security grow. Nevertheless, this increase in usage is creating the challenge of how to effectively be searching and filtering the encrypted emails. They are popular technologies of solving the issue of the encrypted emails searching through searchable public key encryption. However, the problem of encrypted email filtering remains to be solved. As a new approach to finding and filtering encrypted emails in the cloud, we propose a ciphertext-based encrypted policy attribute-based encryption scheme and keyword search procedure based on hidden policy ciphertext. This feature allows the user of searching using some encrypted emails keywords in the cloud as well as allowing the emails filter-based server toward filter the content of the encrypted emails, similar to the traditional email keyword filtering service. By utilizing composite order bilinear groups, a hidden policy system has been successfully demonstrated to be secure by our dual system encryption process. Proposed system can be used with other scenarios such as searching and filtering files as an applicable method.

모바일 결제 서비스에 대한 미래신호 예측 - 중국시장을 대상으로 - (Exploring Future Signals for Mobile Payment Services - A Case of Chinese Market -)

  • 현빈;백승익
    • 서비스연구
    • /
    • 제13권1호
    • /
    • pp.96-107
    • /
    • 2023
  • 본 연구에서는 모바일 결제 서비스 이용률이 세계에서 가장 높은 중국 이용자들을 대상으로 어떤 이슈에 관심이 있는지를 미래신호 예측 방법론을 이용하여 예측하여 보았다. 이를 위하여 중국의 SNS 사이트로부터 모바일 결제와 연관된 텍스트 데이터를 수집한 후, 문장에서 추출한 키워드들을 키워드 등장 지도 (KEM: Keyword Emergence Map)와 키워드 이슈 지도 (KIM: Keyword Issue Map)를 이용하여 강신호, 약신호, 잠재신호, 그리고 강하지만 증가율이 낮은 신호로 분류하였다. 한 걸음 더 나아가서 본 연구에서는 4가지 종류의 신호를 구체적으로 이해하기 위해서 각 신호와 연관된 텍스트를 추가적으로 정성적인 분석을 실시하였다. 그 결과, 현재 뿐만 아니라 본 연구 기간 동안 키워드 출현 빈도가 빠르게 성장하고 있는 강신호에는 버스, 지하철, 가계부와 같이 중국인들의 일상생활과 관련된 키워드가 많이 포함되어 있음을 발견하였고, 현재에는 자주 등장하지만 강신호와는 달리 증가율이 낮은 신호에는 홍바오 (현금결제), 은행카드와 같이 현금 결제를 대체할 수 있는 다양한 서비스가 언급되었음을 발견하였다. 다른 신호에 비하여 출현 빈도가 저조한 약신호와 잠재신호에는 서비스 규정 변화나 이벤트와 연관된 키워드들이 포함되었다. 본 연구 결과를 통하여 모바일 결제 서비스는 중국 이용자들에게 편리함을 제공하는 것을 넘어서 그들의 일상생활을 크게 변화시켰음을 알 수 있었다. 그리고 신용카드 결제가 보편화되지 않은 중국에서 모바일 결제 서비스는 현금결제를 완전히 대체할 수 있는 서비스로 성장할 가능성이 높음을 알 수 있었다.

한국의 사회적 이슈 도출을 위한 뉴스 빅데이터 분석 연구 (Analysis of News Big Data for Deriving Social Issues in Korea)

  • 이홍주
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.163-182
    • /
    • 2019
  • 복잡해지고 있는 현대 사회의 뉴스 키워드를 시간적 흐름에 따른 빈도수와 상관관계로 분석하는 것은 이슈들에 대한 대응과 해결 방안을 논의하기 위해 매우 중요한 연구라고 할 수 있다. 이에 본 논문에서는 10년(2009~2018)간의 뉴스 빅데이터 분석을 통해 사회적 키워드의 흐름과 주요 이슈들 간의 관계를 분석하였다. 분석결과 본 연구에서는 정치적 이슈, 교육 사회문화, 젠더갈등 그리고 사회적 사건이 주요 이슈들로 제시되었다. 또한, 본 연구에서는 이슈의 변화와 흐름을 연구하기 위해 이를 5년 기준으로 양분하여 변화하는 것을 분석하였다. 이를 통해 사회적 이슈의 시간에 따른 변화와 그 대응방안을 연구하였다. 그 결과 국민생활과 밀접한 키워드(경제, 경찰)는 시간의 흐름에 관계없이 우리 사회에서 매우 중요하게 논의되는 키워드로 분석되었다. 또한 '안전'과 같은 키워드는 최근 들어 빈도수에 비해 증가율이 감소되었다. 이를 통해, 우리 사회가 안전에 대한 인식을 개선할 필요가 있는 것으로 추론할 수 있다.

키워드 네트워크 분석을 활용한 과학기술동향 분석 (Analysis of Trends in Science and Technology using Keyword Network Analysis)

  • 박주섭;김나랑;한은정
    • 한국산업정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.63-73
    • /
    • 2018
  • 학계나 연구소에서는 연구동향이나 과학기술동향을 파악하고 예측하기 위해 전문가들의 판단에 의존하는 정성적인 방법을 주로 활용하여 왔다. 이 기법은 많은 시간과 비용이 드는 단점이 있기에 본 논문에서는 키워드 네트워크 분석을 활용하여 과학기술 동향을 예측하였다. 이를 위해 미국 특허 중 AI(Artificial Intelligence) 특허 초록 13,618개를 대상으로 키워드 네트워크 분석을 활용하여 분석 1기(2002.1.1. ~ 2006.12.31.), 분석 2기(2007.1.1. ~ 2011.12.31.), 분석 3기(2012.1.1. ~ 2016.12.31.)로 구분하여 분석하였다. 빈도 분석 결과, 분석 1기에서 3기로 시간이 경과할수록 AI 응용 분야의 방법에 관련된 핵심어들이 부각되었다. 키워드 네트워크 분석에서도 시간이 경과함에 따라 응용 분야의 방법에 관련된 핵심어와 다른 핵심어 간의 연계성이 높아졌다. 또한 분석 전체 기간 중 상승 및 하락 추세를 보인 연계 핵심어를 분석하면 응용 분야의 방법과 관리에 대한 연계성은 강화되는 반면에 기초 분야의 연계성은 약화되었다. 키워드 연결 중심성 분석에서도 기간이 경과할수록 응용 분야에 대한 중심성 수치가 높았다. 키워드 매개 중심성 분석에서 분석 3기는 응용 분야의 방법론 관련 핵심어가 가장 높은 매개 수치를 보였다. 이는 앞으로 응용 분야의 방법들이 AI 분야의 강력한 중개자 역할을 할 것으로 예상된다. 본 논문에서 제시한 기법은 지역혁신과 관련된 과제 발굴이나 사회문제 이슈의 시각화 등 지역혁신 분야에 활용되어 질 수 있을 것이다.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.145-153
    • /
    • 2020
  • 최근 소셜 빅데이터를 대상으로 한 키워드 분석은 고객 관점의 의견이나 불만 사항을 추출하기 위한 목적으로 광범위하게 활용되고 있다. 이와 관련하여, 이전 연구에서는 키워드 분석의 정확도를 높이기 위해 응집도 점수를 활용한 방법을 제안하였으나, 리뷰의 수가 적을 경우 오류율이 증가하는 문제가 있었다. 본 논문에서는 응집도 점수 기반 알고리즘으로부터 추출된 키워드에 대해 간소화된 형태소 분석 단계를 후처리 형태로 적용함으로써 키워드 추출의 정확도를 개선하고자 하였다. 제안 방법은 입력 데이터가 주어질 때마다 필요한 형태소 분석 규칙을 점증적으로 추가할 수 있도록 지원함으로써, 사전의 크기를 최소화하고 분석의 효율을 높이고자 하였다. 또한 대화형 규칙 입력 시스템을 제공하여 분석 규칙 추가에 드는 노력을 최소화하고자 하였다. 제안 방법을 검증하기 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법을 적용할 경우 오류율이 기존 10%에서 1%로 개선되는 동시에, 5,000개의 리뷰 처리에 450ms가 소요되어 실시간 처리가 가능한 수준임을 확인하였다.

다중 수신자 환경에서 키워드 검색 가능한 공개키 암호시스템 (Public Key Encryption with Keyword Search in Multi-Receiver Setting)

  • 이현숙;박종환;이동훈
    • 정보보호학회논문지
    • /
    • 제19권2호
    • /
    • pp.31-38
    • /
    • 2009
  • 키워드 검색 가능한 공개키 암호 (PEKS)은 검색어에 대한 프라이버시를 제공하기 위해서 Boneh et. al.에 의해서 처음으로 제안되었다. 검색 가능한 공개키 암호 (PEKS) 기술은 송신자가 수신자의 공개키로 암호화된 메일 메시지를 이메일 서버에 보내고 서버는 암호문과 송신자에 의해서 생성된 암호화된 쿼리를 이용하여 암호화된 메일 메시지와 암호화된 검색어와의 관련성을 얻는 것이 가능하도록 한다. 이러한 메일 시스템에서는 그룹메일과 같이 하나의 암호화된 메일을 다수의 수신자에게 전송하는 경우를 생각할 수 있다. Hwang과 Lee는 이러한 점을 고려하여 다중 수신자환경에서 FEKS 스킴을 제안하였다. 이러한 다수의 수신자의 환경에서는 전송되는 데이터의 사이즈와 서버의 계산량을 줄이는 것이 중요한 이슈이다. 본 논문에서는 서버측의 페어링(Pairing) 계산량을 줄인 좀더 효율적인 다수의 수신자를 고려한 mPEKS 스킴을 제안한다.