• Title/Summary/Keyword: Isolated DC-DC converter

Search Result 211, Processing Time 0.032 seconds

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

Isolated DC/DC Converter with Very Wide Input Voltage Ranges for Emergency Power Back-up System(EPBS) (비상전원 공급장치를 위한 넓은 입력전압 범위를 갖는 절연형 DC/DC 컨버터)

  • Chae, Hyung-Jun;Kim, Kyoung-Dong;Oh, Hyung-Rock;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents a design and implementation of DC/DC converter with very wide input voltage ranges for EPBS whose input voltage is from 30V to 400V and output voltage is 48V. This converter is comprised of two stages that one is for control and the other is for only galvanic isolation. The proposed converter uses the hard-switched buck-boost topology for control purpose and soft-switched LLC resonant converter for isolation. The proposed converter has been verified with 300W design.

Non-Isolated High Gain Bidirectional Modular DC-DC Converter with Unipolar and Bipolar Structure for DC Networks Interconnections

  • Sun, Lejia;Zhuo, Fang;Wang, Feng;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1357-1368
    • /
    • 2018
  • In this paper, a novel high gain bidirectional modular dc-dc converter (BMC) with unipolar and bipolar structures for dc network interconnections is proposed. When compared with traditional dc grid-connecting converters, the proposed converter can achieve a high voltage gain with a simple modular transformerless structure. A sub-modular structure for the BMC is proposed to eliminate the unbalanced current stress between the different power units (levels) in the BMC. This can realize current sharing and standardized production and assembling. In addition, phase-interval operation is introduced to the sub-modules to realize low voltage and current ripple in both sides of the converter. Furthermore, two types of bipolar topologies of the sub-modular BMC were proposed to extend its application in bipolar dc network connections. In addition, the control system was optimized for grid-connection applications by providing various control strategies. Finally, simulations of a 3-level unipolar sub-modular BMC and a 4-level bipolar sub-modular BMC were conducted, and a 1-kW experimental 3-level unipolar prototype was developed to verify the effectiveness of the proposed converter.

Development of 3.0[kW] class Fuel Cell Power Conversion System(I) (3[kW]급 연료전지용 전력변환장치(I)의 개발)

  • Mun, S.P.;Kwon, S.K.;Suh, K.Y.;Kim, Y.M.;Ryu, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1207-1208
    • /
    • 2006
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%] is obtained over the wide output voltage regulation ranges and load variations.

  • PDF

Analysis and Control of A Fixed Frequency LCL-type Isolated Bidirectional Converter (고정주파수 LCL타입 절연형 양방향 컨버터 해석 및 제어)

  • Park, Sangeun;Cha, Hanju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • This paper discussed the LCL-type & Isolated bidirectional dc-dc converter(BDC) with dual full bridge inverter. In order to verify the analysis of the BDC, Experimental prototype has been designed and implemented to supply constant voltage regardless of loads and proposed a method to select switching frequency that depended on two inductors' inductance ratio and transformer parameters. The proposed converter has been composed of LCL resonant network with unit inductance ratio ($L_r/L_f$=1) and then operated with fixed duty, 50% duty ratio and fixed frequency. There are some characteristics that input voltage and output voltage of the BDC is nearly identical and zero voltage turn-on switching is possible in forward and reverse mode. Finally, it has been showed that BDC is possible to commutate operating mode normally and provide constant output voltage in selected switching frequency.

Bidirectional Zeta-Flyback Converter for Improved Efficiency (개선된 효율을 가지는 양방향 Zeta-Flyback 컨버터)

  • Jung, Mun-Kyu;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.844-849
    • /
    • 2012
  • In this paper, a bidirectional Zeta-Flyback converter is proposed. The topology of the proposed converter is analyzed, which is superposition of bidirectional Flyback converter mode and bidirectional Zeta converter mode in a cycle. The proposed converter allows power flow in either a forward direction or a backward direction. Bidirectional power flow is obtained by a transformer and components. The proposed converter's output is controlled by duty of constant frequency PWM of switch. Compared to conventional bidirectional isolated DC-DC converters, the proposed isolated bidirectional DC-DC converter has high power density and high transformer utilization. To confirm the proposed converter, the simulation and experimental results are presented.

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

Analysis of Current Fed Full Bridge DC-DC Converter with Active Clamp (능동 클램프형 전류형 단상 풀브리지 DC-DC 컨버터의 동작 해석)

  • Cha, Han-Ju;Choi, Soon-Ho;Ahn, Chi-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.205-207
    • /
    • 2007
  • Isolated Current fed full-bridge converter with active clamp is analyzed in this paper. An active clamp branch is used for limiting the voltage overshoot in the bridge switches and rectifier diodes. Zero voltage switching(ZVS) is also realized by using the energy stored in the transformer leakage inductance. To analyze the converter, 6 modes of operation are introduced and investigated. For each of the modes, voltage and current equations are derived together with corresponding equivalent circuits. 200W prototype dc-dc converter is assembled and verifies the effectiveness of the analysis and simulation.

  • PDF

Loss analysis of Current-Fed Full-Bridge DC-DC Converter with Active Clamp (능동 클램프형 전류형 단상 풀브리지 DC-DC 컨버터 실험 및 손실 분석)

  • Cha, Han-Ju;Ahn, Chi-Hyung;Choi, Soon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1149-1150
    • /
    • 2007
  • In this paper, operation of isolated current-fed full-bridge converter with active clamp is investigated by simulation and experiments. Experimental waveforms show a good agreement with the corresponding simulation results. Further, losses such as conduction loss, turn-on/off loss of MOSFETs and diodes are measured and their characteristics in the converter is addressed. 200W prototype DC-DC converter is developed for verification of the derived operating modes, design rules and loss analysis.

  • PDF