• 제목/요약/키워드: Ishikawa iterative sequences with errors

검색결과 10건 처리시간 0.02초

CONVERGENCE THEOREMS OF MODIFIED ISHIKAWA ITERATIVE SEQUENCES WITH MIXED ERRORS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Park, Kwang-Pak;Kim, Ki-Hong;Kim, Kyung-Soo
    • East Asian mathematical journal
    • /
    • 제19권1호
    • /
    • pp.103-111
    • /
    • 2003
  • In this paper, we will discuss some sufficient and necessary conditions for modified Ishikawa iterative sequence with mixed errors to converge to fixed points for asymptotically quasi-nonexpansive mappings in Banach spaces. The results presented in this paper extend, generalize and improve the corresponding results in Liu [4,5] and Ghosh-Debnath [2].

  • PDF

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

SOME CONVERGENCE THEOREMS FOR MAPPINGS OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE IN BANACH SPACES

  • Chang, Shih-sen;Yuying Zhou
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.119-127
    • /
    • 2003
  • The purpose of this paper is to study the necessary and sufficient conditions for the sequences of Ishikawa iterative sequences with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces to converge to a fixed point in Banach spaces. The results presented in this paper extend and improve the corresponding results of[l-4, 7-9].

CONVERGENCE THEOREMS AND STABILITY PROBLEMS OF THE MODIFIED ISHIKAWA ITERATIVE SEQUENCES FOR STRICTLY SUCCESSIVELY HEMICONTRACTIVE MAPPINGS

  • Liu, Zeqing;Kim, Jong-Kyu;Kim, Ki-Hong
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.455-469
    • /
    • 2002
  • The Purpose Of this Paper is to introduce the concept of a class of strictly successively hemicontractive mappings and construct certain stable and almost stable iteration procedures for the iterative approximation of fixed points for asymptotically nonexpansive and strictly successively hemicontractive mappings in Banach spaces.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • 대한수학회지
    • /
    • 제36권6호
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

APPROXIMATING COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Cho, Yeol-Je;Kang, Jung-Im;Zrou, Haiyun
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.661-670
    • /
    • 2005
  • In this paper, we deal with approximations of com­mon fixed points of the iterative sequences with errors for three asymptotically nonexpansive mappings in a uniformly convex Banach space. Our results generalize and improve the corresponding results of Khan and Takahashi, Schu, Takahashi and Tamura, and others.