• Title/Summary/Keyword: Irrigation time

Search Result 446, Processing Time 0.031 seconds

Assessment of the Contribution of Weather, Vegetation, Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (I) - Preparation of Input Data for the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지유역과 하천유역에 미치는 기여도 평가(I) - 모형의 입력자료 구축 -)

  • Park, Geun-Ae;Lee, Yong-Jun;Shin, Hyung-Jin;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.107-120
    • /
    • 2010
  • The effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water was assessed using the SLURP (semi-distributed land use-based runoff process), a physically based hydrological model. The fundamental input data (elevation, meteorological data, land use, soil, vegetation) was collected to calibrate and validate of the SLURP model for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang and Gosam) located in Anseongcheon watershed. Then, the CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year, m ms, m5ms and 2amms was downscaled by Change Factor method through bias-correction using 3m years (1977-2006) weather data of 3 meteorological stations of the watershed. In addition, the future land uses were predicted by modified CA (cellular automata)-Markov technique using the time series land use data fromFactosat images. Also the future vegetation cover information was predicted and considered by the linear regression between monthly NDVI (normalized difference vegetation index) from NOAA AVHRR images and monthly mean temperature using eight years (1998-2006) data.

Changes in Rice Growth Characteristics during Intermittent Drainage Period using Multiple Sensing Technology (다중 센싱 기반 중간물떼기 기간에 따른 벼 생육 특성 변화)

  • Woo-jin Im;Dong-won Kwon;Hyeok-jin Bak;Ji-hyeon Lee;Sungyul Chang;Wan-Gyu Sang;Nam-Jin Chung;Jung-il Cho;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.78-87
    • /
    • 2024
  • The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.

Results of Arthroscopic-assisted Minimally Invasive Removal of a Lateral Periarticular Plate used for the Treatment of AO Type-C Distal Femoral Fractures (AO C-형 원위 대퇴골 골절의 치료로 삽입된 관외측 금속판의 절경 보조하 최소 침습적 제거의 결과)

  • Kim, Young-Mo;Lee, June-Kyu;Yang, Jae-Hoon;Kim, Bo-Kun;Lee, Won-Gu
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Purpose: To evaluate the usefulness of minimally invasive arthroscopy-assisted plate removal of a laterally inserted periarticular distal femur plate used for the treatment of AO type-C distal femur fractures. Materials and Methods: From October 2002 to November 2005, we evaluated 17 patients whose plates were removed through minimally invasive arthroscopy-assisted plate-removal technique and 15 patients who got their plates removed through conventional method without using arthroscopy, 32 patients in total. All these patients included in this study initially underwent open reduction and internal fixation of the distal femoral fractures with a lateral plate, and complained of continued pain over the lateral femoral condyle after the fracture fixation. The average age was 42.6 (ranges: 20~66) and initial fracture types included 16 cases of C1, 11 cases of C2, and 5 cases of C3 following AO/ASIF classification guidelines. Measured outcomes included: associated intra-articular pathologies, time needed to return to activities of daily living, patients' overall satisfaction, complications following the removal of hardware, and pain before and 6 months after the operation. Results: The distal-most end of the plate was placed in the knee joint in all cases and damage of the lateral articular capsule was found in 23 cases. Continuous wound discharge after surgery was found in one case who underwent arthroscopy-assisted plate removal, and it was treated by irrigation and re-suture. Average time needed to return to activities of daily living was 7 days in arthroscopy assisted group and 7.6 days in conventionally removed group. Fourteen patients (82.4%) who underwent arthroscopyassisted plate-removal reported above 'fair' satisfaction and the Visual analog scale pain score decreased from 4.9 to 1.9, six months after the plate removal. Thirteen patients(86.7%) who underwent conventional plate removal reported above 'fair' satisfaction and the Visual analog scale pain score decreased from 5.2 to 2.5, six months after the operation. Conclusion: Through minimally invasive arthroscopic-assisted plate removal, intrarticular pathology of the knee joint was able to be simultaneously identified and treated at the time of hardware removal. Damage of lateral capsule of the knee joint caused by the inserted plate for the treatment of type C distal femoral fracture was very frequently found and following the plate removal, patients experienced an improvement in pain score. We therefore recommend routine lateral distal femoral plate removal if the bony union is attained in such cases as type C distal femoral fractures whose distal most end of the plates are located in the joint.

  • PDF

A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool. (온수지에 의한 관개용수의 수온상승 효과에 관한 연구)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

AN EXPERIMENTAL STUDY ON THE EFFECT OF Ca(OH)2 UPON THE HEALING PROCESS OF THE PULP AND PERIAPICAL TISSUE IN THE DOGS' TEETH (수산화칼슘이 손상치수조직 및 치근조직의 치유에 미치는 영향에 관한 연구)

  • Lim, S.S.;Yoon, S.H.;Lee, C.S.;Lee, M.J.;Kim, Y.H.;Kwon, H.C.;Um, C.M.
    • Restorative Dentistry and Endodontics
    • /
    • v.8 no.1
    • /
    • pp.123-131
    • /
    • 1982
  • The purpose of this study was to observe the responses of the remaining pulp tissue after pulpotomy upon the several kinds of $Ca(OH)_2$ products and the responses of periapical tissue upon some root canal filling materials after extirpation. For pulpotomy, the class V cavities were prepared on the premolars, molars and upper canines, and the pulp was amputated. Each drug was placed over the amputated tissue and cavity was sealed with zinc oxide eugenol cement. The drugs which were used for the study were Dycal (Caulk Co. U.S.A.), Cavitec (Kerr Co. U.S.A.), Calvital, Nobudyne and Neodyne (Neo Dental Chemical Products). For extirpation, the endodontic cavities were prepared on the lingual surfaces of anterior teeth, and the pulp tissues were extirpated as routine method. After enlarging, irrigation, and measuring of root length by taking X-ray, each root canal filling material was filled in the canal with gutta percha cone, and endodontic cavity was sealed with zinc oxide eugenol cement. Zinc oxide eugenol, $Ca(OH)_2$ (Eli Lilly Co. U.S.A.) and Vitapex (Neo Dental Chemical Products) were used as root canal filling materials. Animals were sacrificed after 1, 3 and 6 weeks following the operation. The teeth were decalcified in formic acid, sectioned and stained with hematoxylin eosin. Microscopic examination revealed as follows. 1. Dycal: The dentin bridge formation was observed at the 3rd week after pulpotomy. Inflammatory conditions which were infiltration of inflammatory cells and dilatation of blood vessels were kept in remaining pulp tissue at the 6th week. 2. Calvital: The dentin bridge was observed at the 1st week after pulpotomy. As the time clasped, the pulp tended to be the fibrous degeneration. 3. Cavitec, Nobudyne and Neodyne: In the case of Cavitec and Nobudyne, the incompleted and irregular dentin bridge was observed at the 6th week, and in Neodyne, was observed at the 3rd week. The severe inflammatory changes were seen in the remaining pulp tissue. As the time clasped, the fibrous degeneration tended to spread in the remaining pulp tissue. 4. $Ca(OH)_2$: Osteocementum was formed at the 3rd week, the matrix of cementum and dentin were resorted, and infiltration of lymphocytes was seen in periapical tissue when $Ca(OH)_2$ was used as canal-filling materials. S. ZOE and Vitapex The cementum like substance was seen in periapical portion at the 1st week, when ZOE and Vitapex were used as root canal filling materials. As the time elapsed, the matrix of cementum and dentin tended to be resorted. At the 6th week, the inflammatory condition of periapical tissue was continued in the case of ZOE, but was reduced in the case of Vitapex.

  • PDF

Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors (환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측)

  • Choi, Hayoung;Moon, Taewon;Jung, Dae Ho;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • Temperature and relative humidity are important factors in crop cultivation and should be properly controlled for improving crop yield and quality. In order to control the environment accurately, we need to predict how the environment will change in the future. The objective of this study was to predict air temperature and relative humidity at a future time by using a multilayer perceptron (MLP). The data required to train MLP was collected every 10 min from Oct. 1, 2016 to Feb. 28, 2018 in an eight-span greenhouse ($1,032m^2$) cultivating mango (Mangifera indica cv. Irwin). The inputs for the MLP were greenhouse inside and outside environment data, and set-up and operating values of environment control devices. By using these data, the MLP was trained to predict the air temperature and relative humidity at a future time of 10 to 120 min. Considering typical four seasons in Korea, three-day data of the each season were compared as test data. The MLP was optimized with four hidden layers and 128 nodes for air temperature ($R^2=0.988$) and with four hidden layers and 64 nodes for relative humidity ($R^2=0.990$). Due to the characteristics of MLP, the accuracy decreased as the prediction time became longer. However, air temperature and relative humidity were properly predicted regardless of the environmental changes varied from season to season. For specific data such as spray irrigation, however, the numbers of trained data were too small, resulting in poor predictive accuracy. In this study, air temperature and relative humidity were appropriately predicted through optimization of MLP, but were limited to the experimental greenhouse. Therefore, it is necessary to collect more data from greenhouses at various places and modify the structure of neural network for generalization.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Suggestions for improving data quality assurance and spatial representativeness of Cheorwon AAOS data (철원 자동농업기상관측자료의 품질보증 및 대표성 향상을 위한 제언)

  • Park, Juhan;Lee, Seung-Jae;Kang, Minseok;Kim, Joon;Yang, Ilkyu;Kim, Byeong-Guk;You, Keun-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • Providing high-quality meteorological observation data at sites that represent actual farming environments is essential for useful agrometeorological services. The Automated Agricultural Observing System (AAOS) of the Korean Meteorological Administration, however, has been deployed on lawns rather than actual farm land. In this study, we show the inaccuracies that arise in AAOS data by analyzing temporal and vertical variation and by comparing them with data recorded by the National Center for AgroMeteorology (NCAM) tower that is located at an actual farming site near the AAOS tower. The analyzed data were gathered in August and October (before and after harvest time, respectively). Observed air temperature and water vapor pressure were lower at AAOS than at NCAM tower before and after harvest time. Observed reflected shortwave radiation tended to be higher at AAOS than at NCAM tower. Soil variables showed bigger differences than meteorological observation variables. In August, observed soil temperature was lower at NCAM tower than at AAOS with smaller diurnal changes due to irrigation. The soil moisture observed at NCAM tower continuously maintained its saturation state, while the one at AAOS showed a decreasing trend, following an increase after rainfall. The trend changed in October. Observed soil temperature at NCAM showed similar daily means with higher diurnal changes than at AAOS. The soil moisture observed at NCAM was continuously higher, but both AAOS and NCAM showed similar trends. The above results indicate that the data gathered at the AAOS are inaccurate, and that ground surface cover and farming activities evoke considerable differences within the respective meteorological and soil environments. We propose to shift the equipment from lawn areas to actual farming sites such as rice paddies, farms and orchards, so that the gathered data are representative of the actual agrometeorological observations.

CHANGES IN WATER USE AND MANAGEMENT OVER TIME AND SIGNIFICANCE FOR AUSTRALIA AND SOUTH-EAST ASIA

  • Knight, Michael J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.11a
    • /
    • pp.3-31
    • /
    • 1997
  • Water has always played a significant role in the lives of people. In urbanised Rome, with its million people. sophisticated supply systems developed and then fled with the empire. only to be rediscovered later But it was the industrial Revolution commencing in the eighteenth century that ushered in major paradigm shifts In use and altitudes towards water. Rapid and concentrated urbanisation brought problems of expanded demands for drinking supplies, waste management and disease. The strategy of using water from local streams, springs and village wells collapsed under the onslaughts of rising urban demands and pollution due to poor waste disposal practices. Expanding travel (railways. and steamships) aided the spread of disease. In England. public health crises peaks, related to water-borne typhoid and the three major cholera outbreaks occurred in the late eighteenth and early nineteenth century respectively. Technological, engineering and institutional responses were successful in solving the public health problem. it is generally accepted that the putting of water into pipe networks both for a clean drinking supply, as well as using it as a transport medium for removal of human and other wastes, played a significant role in towering death rates due to waterborne diseases such as cholera and typhoid towards the end of the nineteenth century. Today, similar principles apply. A recent World Bank report Indicates that there can be upto 76% reduction in illness when major water and sanitation improvements occur in developing countries. Water management, technology and thinking in Australia were relatively stable in the twentieth century up to the mid to late 1970s. Groundwater sources were investigated and developed for towns and agriculture. Dams were built, and pipe networks extended both for supply and waste water management. The management paradigms in Australia were essentially extensions of European strategies with the minor adaptions due to climate and hydrogeology. During the 1970s and 1980s in Australia, it was realised increasingly that a knowledge of groundwater and hydrogeological processes were critical to pollution prevention, the development of sound waste management and the problems of salinity. Many millions of dollars have been both saved and generated as a consequence. This is especially in relation to domestic waste management and the disposal of aluminium refinery waste in New South Wales. Major institutional changes in public sector water management are occurring in Australia. Upheveals and change have now reached ail states in Australia with various approaches being followed. Market thinking, corporatisation, privatisation, internationalisation, downsizing and environmental pressures are all playing their role in this paradigm shift. One casualty of this turmoil is the progressive erosion of the public sector skillbase and this may become a serious issue should a public health crisis occur such as a water borne disease. Such crises have arisen over recent times. A complete rethink of the urban water cycle is going on right now in Australia both at the State and Federal level. We are on the threshold of significant change in how we use and manage water, both as a supply and a waste transporter in Urban environments especially. Substantial replacement of the pipe system will be needed in 25 to 30 years time and this will cost billions of dollars. The competition for water between imgation needs and environmental requirements in Australia and overseas will continue to be an issue in rural areas. This will be especially heightened by the rising demand for irrigation produced food as the world's population grows. Rapid urbanisation and industrialisation in the emerging S.E Asian countries are currently producing considerable demands for water management skills and Infrastructure development. This trend e expected to grow. There are also severe water shortages in the Middle East to such an extent that wars may be fought over water issues. Environmental public health crises and shortages will help drive the trends.

  • PDF

A Criteria on Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber (Cucumis sativus L.) under Greenhouse Cultivation (시설 오이의 관비재배를 위한 토양용액과 엽병즙액중 질산태 농도 기준 설정)

  • Lim, Jae-Hyun;Lee, In-Bog;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.316-325
    • /
    • 2001
  • To develope a technique for efficiently managing fertilizer for cucumber, a quick test method to quantify nitrate content in soil solution and leaf petiole juice using a simple instrument was investigated. Among the nitrate analyzing instruments such as compact ion meter, nitrate ion meter, and test strip with reflectometer, the paper test-strip used in conjunction with a hand-held reflectometer was most closely correlated with ion chromatography method in nitrate content, and then it would be suggested with a tool that a farmer can use rapidly, conveniently and accurately for nitrate analysis in a field. Nitrate content in soil solution collected by porous cup was very variable on the lapsed time after drip irrigation and the sampling positions such as soil depth and the distance from dripper. As a result, a significant correlation between nitrate contents of soil solutions and 2M KCl soil extract was not found. However, nitrate content in soil solution extracted with a volume basis (soil:water=1:2) showed the highly significant correlation with that in 2M KCl extract. Nitrate contents of cucumber leaf petiole juices was greatly different between upper and lower leaves. Eleven to sixteen positioned-leaf would be a proper sampling position to determine nitrate content in leaf petiole for evaluating nutrient state by plant tissue analysis. From the secondary regression equations between nitrate contents of soil and petiole juice and the yield of cucumber, nitrate levels for real time diagnosis were estimated as $400mg\;l^{-1}$ soil solution by porous cup. $300mg\;l^{-1}$ in a soil volume extraction, and $1400mg\;l^{-1}$ in petiole juice from spring to summer season. In addition, the maximum yield of cucumber fruit in pot test was obtained in nitrate $1500mg\;l^{-1}$ level of petiole juice, which was similar to nitrate $1400mg\;l^{-1}$ in greenhouse trial.

  • PDF