• Title/Summary/Keyword: Irrigation time

Search Result 446, Processing Time 0.041 seconds

농경지 토양에서 N과 P의 거동 특성

  • 최태범;장윤영;이기철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.451-454
    • /
    • 2003
  • Nonpoint source pollution of groundwater and subsurface water from irrigated agriculture is a major concern in many areas. In this study we aimed to investigate the effect of the water applied by irrigation in agricultural area on the transport of nitrogen and phosphorus originated from fertilizers applied to the surface of soil in agricultural activities. We first conducted investigation on the resdual concentrations of soil N and P in a selected agricultural area. And simulating the target area by column studies in the laboratory leaching extent of various components from the composite and urea fertilizers applied on the soil surface during irrigation was studied. Infiltration of water enhanced the leaching of nitrogen and phosphorus in both the rice paddy field soil and the patch soil. The downward N and P transport with infiltrating water was more pronounced in the patch soil column and the increased residual concentrations of N and P in the lower sections in the patch soil column was found with time.

  • PDF

Failure Risk Evaluation to Flood for Irrigation Reservoirs (농업용 저수지의 홍수 취약성 지수 개발)

  • Jang, Min-Won;Choi, Jin-Yong;Lee, Jun-Goo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.135-138
    • /
    • 2005
  • This study began to establish a risk evaluation method for irrigation reservoirs under the overtopping failure mode. To define the risk, reliability analysis was performed using time series of reservoir flood inflow and spillway outflow. The former was defined as a load and the latter was the resistance component. The method results in failure probability, which is calculated by convolution multiplication between probability distribution functions of both components. The proposed method was applied to 3 reservoir sites and each failure probability was determined as 0.0012, 0.00001, and 0.000001 respectively.

  • PDF

Development of Basin Water Management Program with Object-Oriented Programming - On the Program Design - (객체지향기법을 이용한 유역물관리 프로그램 개발 -프로그램 설계를 중심으로-(관개배수 \circled2))

  • 김선주;김필식;박재흥
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-186
    • /
    • 2000
  • Recently a strong request for the improvement in irrigation water management in order to flexibly meet the spacial and time changes of water demand for agricultural and other uses by saving agricultural water. Thereby, the purpose of this study is to design of Basin Water Management Program(BWMP). BWMP is operate with Open Control System. Accordingly, BMWP is easy to acquire data and control irrigation and drainage facilities. BWMP are consist of Data Base Management System(DBMS) and Model System. DBMS make it possible to analyze data related with planing for water schedul and establish database. Model System are calculate reservoir inflow, reservoir effluent and basin water demand. Finally, operator is decide reservoir operation in consider of Model System and DBMS. BWMP might be nicely adapted to the planning and decision for saving water.

  • PDF

Effect of dark incubation in germination of indirect date palm somatic embryos and conversion into plantlets

  • Mansour Abohatem;Yousra Al-Qubati;Hanan Abohatem
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.267-274
    • /
    • 2023
  • All studies on date palm somatic embryogenesis have focused on germination in the presence of light while neglecting germination in darkness, which mimics the germination process of zygotic embryos within seeds. To improve the date palm micropropagation protocol, we investigated the effects of light and darkness incubation on the germination of indirect date palm somatic embryos and their subsequent conversion into plantlets. Darkness incubation emerged as a pivotal factor in the germination of indirect date palm somatic embryos and their successful conversion into plantlets. Darkness incubation significantly decreased the time required for the conversion of indirect somatic embryos into plantlets, halving the duration from 24 weeks to only 12 weeks. The micropropagation protocol was modified, consolidating the previous two distinct stages of germination and elongation under light incubation into a single stage under darkness incubation. These findings modified the protocol and significantly reduced the overall duration of the date palm micropropagation protocol.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

A Study on IoT based Real-Time Plants Growth Monitoring for Smart Garden

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2020
  • There are many problems that occur currently in agriculture industries. The problems such as unexpected of changing weather condition, lack of labor, dry soil were some of the reasons that may cause the growth of the plants. Condition of the weather in local area is inconsistent due to the global warming effect thus affecting the production of the crops. Furthermore, the loss of farm labor to urban manufacturing jobs is also the problem in this industry. Besides, the condition for the plant like air humidity, air temperature, air quality index, and soil moisture are not being recorded automatically which is more reason for the need of implementation system to monitor the data for future research and development of agriculture industry. As of this, we aim to provide a solution by developing IoT-based platform along with the irrigation for increasing crop quality and productivity in agriculture field. We aim to develop a smart garden system environment which the system is able to auto-monitoring the humidity and temperature of surroundings, air quality and soil moisture. The system also has the capability of automating the irrigation process by analyzing the moisture of soil and the climate condition (like raining). Besides, we aim to develop user-friendly system interface to monitor the data collected from the respective sensor. We adopt an open source hardware to implementation and evaluate this research.

A Study on the Leakage Interception Work in the Irrigation Canal Founding on the Sandy Gravel or the Porous Soil (모래자갈과 누수성 토질을 기반으로하는 용수로의 누수방지에 대한 연구)

  • 강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1965-1970
    • /
    • 1970
  • The experiment was carried out in order to improve the leakage stopping work in the irrigation canal founding on the porous soil. But the experiment had many problems to be studied more owing to the insufficient time and facilities. The results obtained are summarized as follows; 1. Polyethylene film is estimated not to make strength decrease owing to buring in the subsoil, but to make owing to the sunlight. 2. Coated nylon shows the tendency to deteriorate strength when it is buried in the earth or exposed to the sun for long time, but leakage is all but impermeability generally. 3. Leakage loss rates for one hour show some differences in the canal to be full with water in accordance with operating methods, that is, the clay lining section is 12.6%, the coated nylon lining section is 1.7%, the polyethylene film lining section is 1.3%, respectively. 4. Leakage quantities per wetted perimeter unit area show $3.556cc/cm^2/hr$. in the clay lining section, $1.574cc/cm^2/hr$. in the coated nylon section, $0.695cc/cm^2/hr$. in the polyethylene film lining section, respectively. 5. When the construction fund make the clay lining section as a standard, the polyethylene film section is 92.1%, the coated nylon section is 174.2%, respectively. But, the unit cost of execution may be low when the polyethylene film and the coated nylon will enable to mass-produce for the purpose of execution.

  • PDF

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model (시간지체 순환신경망모형을 이용한 수문학적 모형화기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

조해상습지대의 토지개량사업의 기여도조사연구

  • 이기춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1549-1560
    • /
    • 1969
  • When this experiment was treated with various factors of times and vacant intervals of intermittent irrigation in order to search for the effect on the growth of rice-plant and ti's amount of havestr, the following results were obtained during the period of this study. 1. Temperature was high, precipitution during nuturitive growing period, was suitable and Much rainfull, scanty sunlight during reproductive growing period and especially during decrease-sementation period, the cultivative situation of rice-plant of 1968 was almost similar to that of mean year. 2. It was found out that the quality of irrigated water used in the experioment was due to ti's neutural acidity. 3. The soil used in each experimental section was good for fertiligation and similar to the quality of general soil according to the result of soil analysis. 4. It was generally found out that the earlier times of intermittent irrigating and the longer vacant intervals of intermittent irrigation, the worse the growing condition of segmentation period was. 5. When vacant intervals of suspension of water supply were longer, the begining of being in ear of rice-plant ant the time tended to be late about one day. 6. In the view of the growth of maturity period and the amount of intermittent irrigation, it tended to be that the length of stalk of rice-plant was short when time of intermittent irrigation began earlier and the length of ear which came from any various section was not different. When times intermittent of irrigation began gradually early, the number of ears, grains and the weight of grains tended to decrease depending on times of that. All the growing of rice-plant and the amount of havesty tended to decrease, depending on which vacant intervals of intermittent irrigation were long. Finally, it was founedt out that from the point of view of the statistical analysis of weight of grains, it was more then 1% what highly significance of mutual action between times and vacant intermittent irrigation was researched.

  • PDF