• Title/Summary/Keyword: Irregular motion

Search Result 249, Processing Time 0.026 seconds

Statistical analysis of Anomalous Refraction on KVN sites

  • Lee, Jeong Ae;Byun, Do-Young;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.101.1-101.1
    • /
    • 2014
  • The fluctuation of VLBI visibility phase can be occurred, predominantly caused by the irregular distribution and motion of water vapor in the atmosphere at high frequencies (>1GHz). This radio-seeing effect shows up on filled-aperture telescopes as an anomalous refraction (AR). This can be shown as if the antenna pointing-offset increases, in other words the apparent displacement of radio sources from its nominal position happens. We carried out the single-dish observations on KVN sites in order to check the effect of AR from 2010 to 2014. Orion KL, U Her, and R Leo were observed with 1second sampling time at 22.235GHz and 43.122GHz simultaneously. Each source was observed with the tracking mode for 30 minutes per a source. We analyzed the structure function, power spectrum and Allan variance of the data according to a day and a night, a season and observatories. Finally, we can infer that the AR effect depends on the atmospheric environment, especially tropospheric turbulence.

  • PDF

A Study on Extracting Characteristics of High Impedance Fault-Current Based on Chaotic Analysis. (카오스 해석에 기초한 고저항 고장전류의 특징 추출에 관한 연구)

  • 배영철;고재호;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.379-388
    • /
    • 2000
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

Real-time Line Interpolation of a NURBS Curve based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 NURBS 곡선의 실시간 직선 보간)

  • 이제필;이철수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.405-410
    • /
    • 2001
  • In this paper, a new parametric curve interpolator is proposed based on a 3D(3-dimensional) NURBS curve. A free curve is generally divided into small linear segments or circular arcs in CNC machining. The method has caused to a command error, the limitation of machining speed, and the irregular machining surface. The proposed real-time 3D NURBS interpolator continuously generates a linear segment within the range of allowable acceleration/deceleration in the motion controller. Therefore, the algorithm calculates the curvature and the remained distance of a command curve for the smoothing machining. It is expected to attaining high speed and high precision machining in CNC Machine Tool.

  • PDF

Generation of Design Response Spectrum and Earthquake Ground Motion Considering the Recurrence Period (재현주기에 따른 응답스펙트럼과 설계지반운동 산정방법)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.58-65
    • /
    • 1998
  • A purpose of this research is to develope the calculation methods of design input seismic loads, Where, calculation methods are ; (1) Considering different recurrence period of earthquakes which was proposed by ATC 14. (2) Using earthquake records which was modified Korean codes. Responce spectra that was adopted by codes has an estimated recurrence interval of 500 years, with approximately a 90 percent probability of not being exceeded in 50 years. But If we considered the life-time of existing buildings in some cases, response spectra be modified with return period of earthquakes. If we be design highrise and irregular buildings, dynamic analysis method that use time history records should be used. But in Korea, time history records of earthquakes was very few. Therefore to use foreign countries's earthquake record, it is need to select of records considered Korean coeds. As a results, this study propose a calculation method of seismic design input loads that considered return period of earthquakes and also propose using method of earthquakes.

  • PDF

A Study on Extracting Chaotic Properties from High Impedance Faults in Power Systems (전력계통의 고임피던스 고장으로부터 혼돈특성 추출에 관한 연구)

  • 고재호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.545-549
    • /
    • 1999
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper we prove that the nature of the high impedance faults is indeed a deterministic chaos not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. In addition qualitative analysis such a s phase planes Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

Improvement of the Accuracy of Supershort Baseline Acoustic Positioning System in Noise Conditions (잡음에 대한 초단기선 ( SSBL ) 음향위치 시스템의 정도개선)

  • Park, Hae-Hoon;Yoon, Gab-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.109-116
    • /
    • 1993
  • Underwater acoustic positioning systems have been extensively used not only in surface position fixing but also in underwater position fixing. Recently, these systems have been applied in the field of installation and underwater inspection of offshore platforms etc. But in these systems are included the fixing errors as results of a signal with additive noise and irregular motion of vessel by ocean waves. To improve the accuracy of the position fixing a Kalman filter is applied to the supershort baseline (SSBL) acoustic positioning system with beacon mode in noise conditions. The position data obtained by the Kalman filter is compared with raw position data and it is confirmed in the simulation that the former is more accurate than the latter. And an indicator monitoring the filtering effect is described while ship's moving.

  • PDF

Monte-Carlo Simulations of Nonlinear Systems to Non-White Excitation (비백색 잡음을 입력으로 하는 비선형 시스템의 시뮬레이션)

  • D.W. Kim;S.H. Kwon;D.D. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.57-64
    • /
    • 1994
  • The subject of this paper is the simulation of a nonlinear stochastic differential equation. The Monte-Carlo solution of stochastic problems is applied to solve it. The method has been applied to problems involving nonlinear rolling motion of ships in irregular waves. These results are compared with those obtained by the stochastic linearization method and the equivalent nonlinear equation method to demonstrate its usefulness.

  • PDF

Wave propagation in a nonlocal prestressed piezoelectric polygonal plate with non-homogeneity and hygroscopic effect

  • Rajendran Selvamani;Hepzibah Christinal;Farzad Ebrahimi
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.309-330
    • /
    • 2023
  • The humid thermal vibration characteristics of a nonhomogeneous thermopiezoelectric nonlocal plate of polygonal shape are addressed in the purview of generalized nonlocal thermoelasticity. The plate is initially stressed, and the three-dimensional linear elasticity equations are taken to form motion equations. The problem is solved using the Fourier expansion collocation method along the irregular boundary conditions. The numerical results of physical variables have been discussed for the triangle, square, pentagon, and hexagon shapes of the plates and are given as dispersion curves. The amplitude of non-dimensional frequencies is tabulated for the longitudinal and flexural symmetric modes of the thermopiezoelectric plate via moisture and thermal constants. Also, a comparison of numerical results is made with existing literature, and good agreement is reached.

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Locomotion of Biped Robots on Irregular Surface Based on Pseudo-Impedance Model (의사-임피던스 모델을 이용한 비평탄면에서의 2족보행로봇의 보행)

  • Shin, Hyeon-Sik;Park, Jong-Hyeon;Kwon, O-Hung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.667-673
    • /
    • 2010
  • This paper proposes a control method based on a pseudo-impedance model to control the motion of biped robots walking on an uneven surface. The pseudo-impedance model simulates the action of the ankle of a foot landing on the ground when a human walks. When the foot is in contact with the ground, the human ankle goes through two different phases. In the first phase, the human exerts little or no effort and applies no torque on the ankle so that the orientation of the foot is effortlessly and passively adjusted with respect to the ground. In the second phase of landing, the ankle generates a significant amount of torque in order to rotate and move the main part of the human body forward and to support the weight of the human; this phase is called the weight acceptance phase. Computer simulations of a 12-DOF biped robot with a 6-DOF environment model were performed to determine the effectiveness of the proposed pseudo-impedance control. The simulation results show that stable locomotion can be achieved on an irregular surface by using the proposed model.